Skip to main content

Proteomic Analysis of Engineered Cartilage

  • Protocol
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1340))

Abstract

Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue-engineered cartilage. Using normal cartilage tissue as a standard, tissue-engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ (2005) Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5:3048–3059

    Article  CAS  Google Scholar 

  2. De Ceuninck F, Marcheteau E, Berger S, Caliez A, Dumont V, Raes M, Anract P, Leclerc G, Boutin JA, Ferry G (2005) Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech 16:256–265

    Google Scholar 

  3. Vincourt JB, Lionneton F, Kratassiouk G, Guillemin F, Netter P, Mainard D, Magdalou J (2006) Establishment of a reliable method for direct proteome characterization of human articular cartilage. Mol Cell Proteomics 5:1984–1995

    Article  CAS  Google Scholar 

  4. Lammi MJ, Hayrinen J, Mahonen A (2006) Proteomic analysis of cartilage- and bone-associated samples. Electrophoresis 27:2687–2701

    Article  CAS  Google Scholar 

  5. Garcia BA, Platt MD, Born TL, Shabanowitz J, Marcus NA, Hunt DF (2006) Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2999–3006

    Article  CAS  Google Scholar 

  6. Yu CJ, Ko CJ, Hsieh CH, Chien CT, Huang LH, Lee CW, Jiang CC (2014) Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics 99:40–53

    Article  CAS  Google Scholar 

  7. Belluoccio D, Wilson R, Thornton DJ, Wallis TP, Gorman JJ, Bateman JF (2006) Proteomic analysis of mouse growth plate cartilage. Proteomics 6:6549–6553

    Article  CAS  Google Scholar 

  8. Wilson R, Norris EL, Brachvogel B, Angelucci C, Zivkovic S, Gordon L, Bernardo BC, Stermann J, Sekiguchi K, Gorman JJ, Bateman JF (2012) Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development. Mol Cell Proteomics 11(M111):014159

    Google Scholar 

  9. Cillero-Pastor B, Eijkel GB, Kiss A, Blanco FJ, Heeren RM (2013) Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheum 65:710–720

    Article  CAS  Google Scholar 

  10. Pecora F, Forlino A, Gualeni B, Lupi A, Giorgetti S, Marchese L, Stoppini M, Tenni R, Cetta G, Rossi A (2007) A quantitative and qualitative method for direct 2-DE analysis of murine cartilage. Proteomics 7:4003–4007

    Article  CAS  Google Scholar 

  11. Ruiz-Romero C, Calamia V, Carreira V, Mateos J, Fernandez P, Blanco FJ (2010) Strategies to optimize two-dimensional gel electrophoresis analysis of the human joint proteome. Talanta 80:1552–1560

    Article  CAS  Google Scholar 

  12. Ikeda D, Ageta H, Tsuchida K, Yamada H (2013) iTRAQ-based proteomics reveals novel biomarkers of osteoarthritis. Biomarkers 18:565–572

    Article  CAS  Google Scholar 

  13. Ji YH, Ji JL, Sun FY, Zeng YY, He XH, Zhao JX, Yu Y, Yu SH, Wu W (2010) Quantitative proteomics analysis of chondrogenic differentiation of C3H10T1/2 mesenchymal stem cells by iTRAQ labeling coupled with on-line two-dimensional LC/MS/MS. Mol Cell Proteomics 9:550–564

    Article  CAS  Google Scholar 

  14. Polacek M, Bruun JA, Johansen O, Martinez I (2010) Differences in the secretome of cartilage explants and cultured chondrocytes unveiled by SILAC technology. J Orthop Res 28:1040–1049

    CAS  Google Scholar 

  15. Wilson R, Diseberg AF, Gordon L, Zivkovic S, Tatarczuch L, Mackie EJ, Gorman JJ, Bateman JF (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol Cell Proteomics 9:1296–1313

    Article  CAS  Google Scholar 

  16. Wilson R, Bateman JF (2008) A robust method for proteomic characterization of mouse cartilage using solubility-based sequential fractionation and two-dimensional gel electrophoresis. Matrix Biol 27:709–712

    Article  CAS  Google Scholar 

  17. Koo J, Kim KI, Min BH, Lee GM (2010) Differential protein expression in human articular chondrocytes expanded in serum-free media of different medium osmolalities by DIGE. J Proteome Res 9:2480–2487

    Article  CAS  Google Scholar 

  18. Piltti J, Hayrinen J, Karjalainen HM, Lammi MJ (2008) Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells. Biorheology 45:323–335

    Google Scholar 

  19. Stevens AL, Wishnok JS, Chai DH, Grodzinsky AJ, Tannenbaum SR (2008) A sodium dodecyl sulfate-polyacrylamide gel electrophoresis-liquid chromatography tandem mass spectrometry analysis of bovine cartilage tissue response to mechanical compression injury and the inflammatory cytokines tumor necrosis factor alpha and interleukin-1beta. Arthritis Rheum 58:489–500

    Article  CAS  Google Scholar 

  20. Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC (2011) Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A 17:2919–2929

    Article  CAS  Google Scholar 

  21. Rocha B, Calamia V, Mateos J, Fernandez-Puente P, Blanco FJ, Ruiz-Romero C (2012) Metabolic labeling of human bone marrow mesenchymal stem cells for the quantitative analysis of their chondrogenic differentiation. J Proteome Res 11:5350–5361

    Article  CAS  Google Scholar 

  22. Gong L, Zhou X, Wu Y, Zhang Y, Wang C, Zhou H, Guo F, Cui L (2014) Proteomic analysis profile of engineered articular cartilage with chondrogenic differentiated adipose tissue-derived stem cells loaded polyglycolic acid mesh for weight-bearing area defect repair. Tissue Eng Part A 20:575–587

    CAS  Google Scholar 

  23. Rocha B, Calamia V, Casas V, Carrascal M, Blanco FJ, Ruiz-Romero C (2014) Secretome analysis of human mesenchymal stem cells undergoing chondrogenic differentiation. J Proteome Res 13:1045–1054

    Article  CAS  Google Scholar 

  24. Wilson R, Belluoccio D, Little CB, Fosang AJ, Bateman JF (2008) Proteomic characterization of mouse cartilage degradation in vitro. Arthritis Rheum 58:3120–3131

    Article  CAS  Google Scholar 

  25. Clutterbuck AL, Smith JR, Allaway D, Harris P, Liddell S, Mobasheri A (2011) High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation. J Proteomics 74:704–715

    Article  CAS  Google Scholar 

  26. Swan AL, Hillier KL, Smith JR, Allaway D, Liddell S, Bacardit J, Mobasheri A (2013) Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning. BMC Musculoskelet Disord 14:349

    Article  Google Scholar 

  27. Brachvogel B, Zaucke F, Dave K, Norris EL, Stermann J, Dayakli M, Koch M, Gorman JJ, Bateman JF, Wilson R (2013) Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome. J Biol Chem 288:13481–13492

    Article  CAS  Google Scholar 

  28. Brown RJ, Mallory C, McDougal OM, Oxford JT (2011) Proteomic analysis of Col11a1-associated protein complexes. Proteomics 11:4660–4676

    Article  CAS  Google Scholar 

  29. Glenn G (2014) Preparation of protein samples for mass spectrometry and N-terminal sequencing. Methods Enzymol 536:27–44

    Article  CAS  Google Scholar 

  30. Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1025s88, Chapter 10, Unit10.25

    Google Scholar 

  31. Shteynberg D, Nesvizhskii AI, Moritz RL, Deutsch EW (2013) Combining results of multiple search engines in proteomics. Mol Cell Proteomics 12:2383–2393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Barbara Jibben for technical support. This work was supported by Institutional Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant numbers P20GM103408 and P20GM109095, NNX10AN29A from NASA, and the Boise State University Biomolecular Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Thom Oxford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pu, X., Oxford, J.T. (2015). Proteomic Analysis of Engineered Cartilage. In: Doran, P. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 1340. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2938-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2938-2_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2937-5

  • Online ISBN: 978-1-4939-2938-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics