Skip to main content

Assaying the Posttranslational Arginylation of Proteins in Cultured Cells

  • Protocol
  • 1707 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1337))

Abstract

To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seo J, Lee KJ (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37(1):35–44

    Article  CAS  PubMed  Google Scholar 

  2. Baumann M, Meri S (2004) Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev Proteomics 1(2):207–217

    Article  CAS  PubMed  Google Scholar 

  3. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  PubMed  Google Scholar 

  4. Shrimal S, Trueman SF, Gilmore R (2013) Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. J Cell Biol 201(1):81–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, Hallak ME (2007) Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem 282(11):8237–8245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Saha S, Kashina A (2011) Posttranslational arginylation as a global biological regulator. Dev Biol 358(1):1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–477

    Article  CAS  PubMed  Google Scholar 

  8. Soffer RL, Horinishi H (1969) Enzymic modification of proteins. I. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm. J Mol Biol 43(1):163–175

    Article  CAS  PubMed  Google Scholar 

  9. Soffer RL (1970) Aminoacyl-tRNA-protein transferases: a novel class of enzymes catalyzing peptide bond formation. Trans N Y Acad Sci 32(8):974–988

    Article  CAS  PubMed  Google Scholar 

  10. Soffer RL (1970) Enzymatic modification of proteins. II. Purification and properties of the arginyl transfer ribonucleic acid-protein transferase from rabbit liver cytoplasm. J Biol Chem 245(4):731–737

    CAS  PubMed  Google Scholar 

  11. Ciechanover A, Ferber S, Ganoth D, Elias S, Hershko A, Arfin S (1988) Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J Biol Chem 263(23):11155–11167

    CAS  PubMed  Google Scholar 

  12. Soffer RL (1971) Enzymatic modification of proteins.V. Protein acceptor specificity in the arginine-transfer reaction. J Biol Chem 246(6):1602–1606

    CAS  PubMed  Google Scholar 

  13. Wang J, Han X, Saha S, Xu T, Rai R, Zhang F, Wolf YI, Wolfson A, Yates JR III, Kashina A (2011) Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem Biol 18(1):121–130

    Article  PubMed Central  PubMed  Google Scholar 

  14. Soffer RL (1973) Peptide acceptors in the arginine transfer reaction. J Biol Chem 248(8):2918–2921

    CAS  PubMed  Google Scholar 

  15. Eriste E, Norberg A, Nepomuceno D, Kuei C, Kamme F, Tran DT, Strupat K, Jornvall H, Liu C, Lovenberg TW, Sillard R (2005) A novel form of neurotensin post-translationally modified by arginylation. J Biol Chem 280(42):35089–35097

    Article  CAS  PubMed  Google Scholar 

  16. Wong CC, Xu T, Rai R, Bailey AO, Yates JR III, Wolf YI, Zebroski H, Kashina A (2007) Global analysis of posttranslational protein arginylation. PLoS Biol 5(10), e258

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR 3rd, Kashina A (2008) Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 135(23):3881–3889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bohley P, Kopitz J, Adam G (1988) Arginylation, surface hydrophobicity and degradation of cytosol proteins from rat hepatocytes. Adv Exp Med Biol 240:159–169

    Article  CAS  PubMed  Google Scholar 

  19. Elias S, Ciechanover A (1990) Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin-protein ligase. J Biol Chem 265(26):15511–15517

    CAS  PubMed  Google Scholar 

  20. Bohley P, Kopitz J, Adam G, Rist B, von Appen F, Urban S (1991) Post-translational arginylation and intracellular proteolysis. Biomed Biochim Acta 50(4-6):343–346

    CAS  PubMed  Google Scholar 

  21. Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A (2010) Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 21(8):1350–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Decca MB, Bosc C, Luche S, Brugiere S, Job D, Rabilloud T, Garin J, Hallak ME (2006) Protein arginylation in rat brain cytosol: a proteomic analysis. Neurochem Res 31(3):401–409

    Article  CAS  PubMed  Google Scholar 

  23. Carpio MA, Lopez Sambrooks C, Durand ES, Hallak ME (2010) The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J 429(1):63–72

    Article  CAS  PubMed  Google Scholar 

  24. Lopez Sambrooks C, Carpio MA, Hallak ME (2012) Arginylated calreticulin at plasma membrane increases susceptibility of cells to apoptosis. J Biol Chem 287(26):22043–22054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fissolo S, Bongiovanni G, Decca MB, Hallak ME (2000) Post-translational arginylation of proteins in cultured cells. Neurochem Res 25(1):71–76

    Article  CAS  PubMed  Google Scholar 

  26. Lanucara F, Eyers CE (2011) Mass spectrometric-based quantitative proteomics using SILAC. Methods Enzymol 500:133–150

    Article  CAS  PubMed  Google Scholar 

  27. Fraenkel-Conrat H, Harris JI, Levy AL (1955) Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal 2:359–425

    Article  CAS  PubMed  Google Scholar 

  28. Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22(3):475

    CAS  PubMed  Google Scholar 

  29. DeLange RJ, Fambrough DM, Smith EL, Bonner J (1968) Calf and pea histone IV. I. Amino acid compositions and the identical COOH-terminal 19-residue sequence. J Biol Chem 243(22):5906–5913

    CAS  PubMed  Google Scholar 

  30. Wang J, Han X, Wong CC, Cheng H, Aslanian A, Xu T, Leavis P, Roder H, Hedstrom L, Yates JR III, Kashina A (2014) Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem Biol 21(3):331–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Saha S, Wong CC, Xu T, Namgoong S, Zebroski H, Yates JR III, Kashina A (2011) Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem Biol 18(11):1369–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xu T, Wong CC, Kashina A, Yates JR III (2009) Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat Protoc 4(3):325–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.R.G. and M.E.H. are career investigators from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta E. Hallak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galiano, M.R., Hallak, M.E. (2015). Assaying the Posttranslational Arginylation of Proteins in Cultured Cells. In: Kashina, A. (eds) Protein Arginylation. Methods in Molecular Biology, vol 1337. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2935-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2935-1_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2934-4

  • Online ISBN: 978-1-4939-2935-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics