Skip to main content

Designer Nuclease-Mediated Generation of Knockout THP1 Cells

  • Protocol
TALENs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1338))

Abstract

Recent developments in the field of designer nucleases allow the efficient and specific manipulation of genomic architectures in eukaryotic cell lines. To this end, it has become possible to introduce DNA double strand breaks (DSBs) at user-defined genomic loci. If located in critical coding regions of genes, thus induced DSBs can lead to insertions or deletions (indels) that result in frameshift mutations and thereby the knockout of the target gene. In this chapter, we describe a step-by-step workflow for establishing knockout cell clones of the difficult-to-transfect suspension cell line THP1. The here described protocol encompasses electroporation, cell cloning, and a deep sequencing-based genotyping step that allows the in-parallel analysis of 96 cell clones per gene of interest. Furthermore, we describe the use of the analysis tool OutKnocker that allows rapid identification of cell clones with all-allelic frameshift mutations.

Tobias Schmidt and Jonathan L. Schmid-Burgk contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. doi:10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  2. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148. doi:10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  3. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334. doi:10.1038/nrg3686

    Article  CAS  PubMed  Google Scholar 

  5. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. doi:10.1016/j.tibtech.2013.04.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740. doi:10.1101/cshperspect.a012740

    Article  PubMed  Google Scholar 

  7. Chiruvella KK, Liang Z, Wilson TE (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 5(5):a012757. doi:10.1101/cshperspect.a012757

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. doi:10.1146/annurev.biochem.052308.093131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schmid-Burgk J, Schmidt T, Gaidt M, Pelka K, Latz E, Ebert T, Hornung V (2014) OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res 24(10):1719–1723. doi:10.1101/gr.176701.114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. doi:10.1038/nbt.2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is financially supported by SFB 670, SFB 704, ERC starting grant, the ImmunoSensation cluster of excellence to V.H., and by the Studienstiftung des deutschen Volkes (J.L.S.-B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Hornung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, T., Schmid-Burgk, J.L., Ebert, T.S., Gaidt, M.M., Hornung, V. (2016). Designer Nuclease-Mediated Generation of Knockout THP1 Cells. In: Kühn, R., Wurst, W., Wefers, B. (eds) TALENs. Methods in Molecular Biology, vol 1338. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2932-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2932-0_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2931-3

  • Online ISBN: 978-1-4939-2932-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics