Skip to main content

Noninvasive Molecular Imaging of Mouse Atherosclerosis

  • Protocol
Book cover Methods in Mouse Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1339))

Abstract

Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virmani R, Burke AP, Farb A et al (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18

    Article  CAS  PubMed  Google Scholar 

  2. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  3. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    Article  CAS  PubMed  Google Scholar 

  4. Fishbein MC (2010) The vulnerable and unstable atherosclerotic plaque. Cardiovasc Pathol 19:6–11

    Article  PubMed  Google Scholar 

  5. Hattori K, Ozaki Y, Ismail TF et al (2012) Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovasc Imaging 5:169–177

    Article  PubMed  Google Scholar 

  6. Miyamoto Y, Okura H, Kume T et al (2011) Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc Imaging 4:638–646

    Article  PubMed  Google Scholar 

  7. Christoph M, Herold J, Berg-Holldack A et al (2015) Effects of the PPARgamma agonist pioglitazone on coronary atherosclerotic plaque composition and plaque progression in non-diabetic patients: a double-center, randomized controlled VH-IVUS pilot-trial. Heart Vessels 30(3):286–295

    Google Scholar 

  8. van Velzen JE, Schuijf JD, de Graaf FR et al (2009) Plaque type and composition as evaluated non-invasively by MSCT angiography and invasively by VH IVUS in relation to the degree of stenosis. Heart 95:1990–1996

    Article  PubMed  Google Scholar 

  9. Jefferson A, Wijesurendra RS, McAteer MA et al (2011) Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: rational design through target quantification. Atherosclerosis 219:579–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014

    Article  CAS  PubMed  Google Scholar 

  11. Itskovich VV, Choudhury RP, Aguinaldo JG et al (2003) Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation. Magn Reson Med 49:381–385

    Article  CAS  PubMed  Google Scholar 

  12. Choudhury RP, Fayad ZA, Aguinaldo JG et al (2003) Serial, noninvasive, in vivo magnetic resonance microscopy detects the development of atherosclerosis in apolipoprotein E-deficient mice and its progression by arterial wall remodeling. J Magn Reson Imaging 17:184–189

    Article  PubMed  Google Scholar 

  13. Rosenfeld ME, Polinsky P, Virmani R et al (2000) Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 20:2587–2592

    Article  CAS  PubMed  Google Scholar 

  14. Sato K, Nakano K, Katsuki S et al (2012) J Atheroscler Thromb 19:986–998

    Article  CAS  PubMed  Google Scholar 

  15. Bond AR, Jackson CL (2011) The fat-fed apolipoprotein E knockout mouse brachiocephalic artery in the study of atherosclerotic plaque rupture. J Biomed Biotechnol 2011:379069

    Article  PubMed Central  PubMed  Google Scholar 

  16. Calara F, Silvestre M, Casanada F et al (2001) Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 195:257–263

    Article  CAS  PubMed  Google Scholar 

  17. McNeill E, Channon KM, Greaves DR (2010) Inflammatory cell recruitment in cardiovascular disease: murine models and potential clinical applications. Clin Sci (Lond) 118:641–655

    Article  CAS  Google Scholar 

  18. Choudhury RP, Fisher EA (2009) Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 29:983–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rudd JH, Elkhawad M, Fayad ZA (2009) Vascular imaging with 18F-FDG PET/CT: optimal 18F-FDG circulation time? J Nucl Med 50:1560, author reply 1560–1561

    Article  PubMed  Google Scholar 

  20. Ogawa M, Nakamura S, Saito Y et al (2012) What can be seen by 18F-FDG PET in atherosclerosis imaging? The effect of foam cell formation on 18F-FDG uptake to macrophages in vitro. J Nucl Med 53:55–58

    Article  CAS  PubMed  Google Scholar 

  21. Ishino S, Ogawa M, Mori I et al (2014) (18)F-FDG PET and intravascular ultrasonography (IVUS) images compared with histology of atherosclerotic plaques: (18)F-FDG accumulates in foamy macrophages. Eur J Nucl Med Mol Imaging 41:624–633

    Article  CAS  PubMed  Google Scholar 

  22. Graebe M, Pedersen SF, Borgwardt L et al (2009) Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg 37:714–721

    Article  CAS  PubMed  Google Scholar 

  23. Leuschner F, Nahrendorf M (2011) Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ Res 108:593–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Folco EJ, Sheikine Y, Rocha VZ et al (2011) Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol 58:603–614

    Article  CAS  PubMed  Google Scholar 

  25. Joshi NV, Vesey AT, Williams MC et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705–713

    Article  PubMed  Google Scholar 

  26. Kaufmann BA, Carr CL, Belcik JT et al (2010) Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 30:54–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284

    Article  CAS  PubMed  Google Scholar 

  28. Khanicheh E, Mitterhuber M, Xu L et al (2013) Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS One 8:e58761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Liu Y, Davidson BP, Yue Q et al (2013) Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging 6:74–82

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang LV (2008) Prospects of photoacoustic tomography. Med Phys 35:5758–5767

    Article  PubMed Central  PubMed  Google Scholar 

  31. Qin H, Zhou T, Yang S et al (2013) Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine (Lond) 8:1611–1624

    Article  CAS  Google Scholar 

  32. Rouleau L, Berti R, Ng VW et al (2013) VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice. Contrast Media Mol Imaging 8:27–39

    Article  CAS  PubMed  Google Scholar 

  33. Sipkins DA, Cheresh DA, Kazemi MR et al (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    Article  CAS  PubMed  Google Scholar 

  35. Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 104:961–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lipinski MJ, Amirbekian V, Frias JC et al (2006) MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56:601–610

    Article  PubMed  Google Scholar 

  37. Frias JC, Williams KJ, Fisher EA et al (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317

    Article  CAS  PubMed  Google Scholar 

  38. Glickson JD, Lund-Katz S, Zhou R et al (2008) Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol Imaging 7:101–110

    CAS  PubMed  Google Scholar 

  39. Cormode DP, Briley-Saebo KC, Mulder WJ et al (2008) An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection. Small 4:1437–1444

    Article  CAS  PubMed  Google Scholar 

  40. Cormode DP, Chandrasekar R, Delshad A et al (2009) Comparison of synthetic high density lipoprotein (HDL) contrast agents for MR imaging of atherosclerosis. Bioconjug Chem 20:937–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cormode DP, Fisher EA, Stroes ES et al (2013) High-density lipoprotein is a nanoparticle, but not all nanoparticles are high-density lipoprotein. Proc Natl Acad Sci U S A 110:E3548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cormode DP, Frias JC, Ma Y et al (2009) HDL as a contrast agent for medical imaging. Clin Lipidol 4:493–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Skajaa T, Cormode DP, Falk E et al (2010) High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 30:169–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sibson NR, Blamire AM, Bernades-Silva M et al (2004) MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 51:248–252

    Article  CAS  PubMed  Google Scholar 

  45. Sipkins DA, Gijbels K, Tropper FD et al (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  CAS  PubMed  Google Scholar 

  47. Stratta P, Canavese C, Aime S (2008) Gadolinium-enhanced magnetic resonance imaging, renal failure and nephrogenic systemic fibrosis/nephrogenic fibrosing dermopathy. Curr Med Chem 15:1229–1235

    Article  CAS  PubMed  Google Scholar 

  48. Lim YL, Lee HY, Low SC et al (2007) Possible role of gadolinium in nephrogenic systemic fibrosis: report of two cases and review of the literature. Clin Exp Dermatol 32:353–358

    Article  CAS  PubMed  Google Scholar 

  49. Bousquet JC, Saini S, Stark DD et al (1988) Gd-DOTA: characterization of a new paramagnetic complex. Radiology 166:693–698

    Article  CAS  PubMed  Google Scholar 

  50. Alhadad A, Akesson M, Lehti L et al (2014) Safety aspects of gadofosveset in clinical practice - analysis of acute and long-term complications. Magn Reson Imaging 32:570–573

    Article  CAS  PubMed  Google Scholar 

  51. Phinikaridou A, Andia ME, Indermuehle A et al (2014) Vascular remodeling and plaque vulnerability in a rabbit model of atherosclerosis: comparison of delayed-enhancement MR imaging with an elastin-specific contrast agent and unenhanced black-blood MR imaging. Radiology 271:390

    Article  PubMed  Google Scholar 

  52. Phinikaridou A, Andia ME, Protti A et al (2012) Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation 126:707–719

    Article  CAS  PubMed  Google Scholar 

  53. Phinikaridou A, Andia ME, Passacquale G et al (2013) Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc 2:e000402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Mendonca Dias MH, Lauterbur PC (1986) Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magn Reson Med 3:328–330

    Article  CAS  PubMed  Google Scholar 

  55. Renshaw PF, Owen CS, McLaughlin AC et al (1986) Ferromagnetic contrast agents: a new approach. Magn Reson Med 3:217–225

    Article  CAS  PubMed  Google Scholar 

  56. Dahnke H, Liu W, Herzka D et al (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60:595–603

    Article  PubMed Central  PubMed  Google Scholar 

  57. Briley-Saebo KC, Mani V, Hyafil F et al (2008) Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med 59:721–730

    Article  PubMed  Google Scholar 

  58. Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338

    Article  PubMed  Google Scholar 

  59. Shapiro EM, Sharer K, Skrtic S et al (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    Article  PubMed  Google Scholar 

  60. Heyn C, Ronald JA, Mackenzie LT et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29

    Article  PubMed  Google Scholar 

  61. Yang Y, Yanasak N, Schumacher A et al (2010) Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 63:33–40

    CAS  PubMed  Google Scholar 

  62. Ye Q, Wu YL, Foley LM et al (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118:149–156

    Article  PubMed Central  PubMed  Google Scholar 

  63. McAteer MA, Mankia K, Ruparelia N et al (2012) A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler Thromb Vasc Biol 32:1427–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. McAteer MA, von Zur Muhlen C, Anthony DC et al (2011) Magnetic resonance imaging of brain inflammation using microparticles of iron oxide. Methods Mol Biol 680:103–115

    Article  CAS  PubMed  Google Scholar 

  65. Ruehm SG, Corot C, Vogt P et al (2002) Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits. Acad Radiol 9(Suppl 1):S143–S144

    Article  PubMed  Google Scholar 

  66. Litovsky S, Madjid M, Zarrabi A et al (2003) Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 107:1545–1549

    Article  PubMed  Google Scholar 

  67. Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  CAS  PubMed  Google Scholar 

  68. Mulder WJ, Strijkers GJ, Briley-Saboe KC et al (2007) Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med 58:1164–1170

    Article  PubMed  Google Scholar 

  69. Nahrendorf M, Keliher E, Marinelli B et al (2010) Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci U S A 107:7910–7915

    Article  PubMed Central  PubMed  Google Scholar 

  70. Jarrett BR, Correa C, Ma KL et al (2010) In vivo mapping of vascular inflammation using multimodal imaging. PLoS One 5:e13254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Devaraj NK, Keliher EJ, Thurber GM et al (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20:397–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Nahrendorf M, Keliher E, Marinelli B et al (2011) Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol 31:750–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925

    Article  CAS  PubMed  Google Scholar 

  74. Oksjoki R, Kovanen PT, Pentikainen MO (2003) Role of complement activation in atherosclerosis. Curr Opin Lipidol 14:477–482

    Article  CAS  PubMed  Google Scholar 

  75. Dansky HM, Barlow CB, Lominska C et al (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21:1662–1667

    Article  CAS  PubMed  Google Scholar 

  76. Nahrendorf M, Sosnovik DE, French BA et al (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70

    Article  PubMed Central  PubMed  Google Scholar 

  77. Carlos TM, Schwartz BR, Kovach NL et al (1990) Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76:965–970

    CAS  PubMed  Google Scholar 

  78. Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851

    Article  CAS  PubMed  Google Scholar 

  79. Ramos CL, Huo Y, Jung U et al (1999) Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 84:1237–1244

    Article  CAS  PubMed  Google Scholar 

  80. Tsourkas A, Shinde-Patil VR, Kelly KA et al (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16:576–581

    Article  CAS  PubMed  Google Scholar 

  81. Kelly KA, Allport JR, Tsourkas A et al (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336

    Article  CAS  PubMed  Google Scholar 

  82. Nahrendorf M, Jaffer FA, Kelly KA et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    Article  CAS  PubMed  Google Scholar 

  83. Michalska M, Machtoub L, Manthey HD et al (2012) Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol 32:2350–2357

    Article  CAS  PubMed  Google Scholar 

  84. Burtea C, Ballet S, Laurent S et al (2012) Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol 32:e36–e48

    Article  CAS  PubMed  Google Scholar 

  85. Bruckman MA, Jiang K, Simpson EJ et al (2014) Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett 14:1551–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. McAteer MA, Akhtar AM, von Zur Muhlen C et al (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. McAteer MA, Choudhury RP (2009) Chapter 4 - Applications of nanotechnology in molecular imaging of the brain. Prog Brain Res 180:72–96

    Article  PubMed  CAS  Google Scholar 

  88. McAteer MA, Sibson NR, von Zur Muhlen C et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Serres S, Mardiguian S, Campbell SJ et al (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 25:4415–4422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Akhtar AM, Schneider JE, Chapman SJ et al (2010) In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging. PLoS One 5:e12800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Hoyte LC, Brooks KJ, Nagel S et al (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Grieve SM, Lonborg J, Mazhar J et al (2013) Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia-reperfusion injury. Eur Biophys J 42:61–70

    Article  CAS  PubMed  Google Scholar 

  93. Mardiguian S, Serres S, Ladds E et al (2013) Anti-IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol 182:2071–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. McAteer MA, Choudhury RP (2013) Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano- and micro-sized agents. Vascul Pharmacol 58:31–38

    Article  CAS  PubMed  Google Scholar 

  95. McAteer MA, Schneider JE, Ali ZA et al (2008) Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 28:77–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. von zur Muhlen C, Peter K, Ali ZA et al (2009) Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J Vasc Res 46:6–14

    Article  CAS  Google Scholar 

  97. Weller GE, Villanueva FS, Tom EM et al (2005) Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 92:780–788

    Article  CAS  PubMed  Google Scholar 

  98. Sun D, Nakao S, Xie F et al (2010) Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers. FASEB J 24:1532–1540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ha S, Carson A, Agarwal A et al (2011) Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. Biomed Opt Express 2:645–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. van Kasteren SI, Kramer HB, Gamblin DP et al (2007) Site-selective glycosylation of proteins: creating synthetic glycoproteins. Nat Protoc 2:3185–3194

    Article  PubMed  CAS  Google Scholar 

  101. Nahrendorf M, Keliher E, Panizzi P et al (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2:1213–1222

    Article  PubMed Central  PubMed  Google Scholar 

  102. Broisat A, Hernot S, Toczek J et al (2012) Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110:927–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Nahrendorf M, McCarthy JR, Libby P (2012) Over a hump for imaging atherosclerosis: nanobodies visualize vascular cell adhesion molecule-1 in inflamed plaque. Circ Res 110:902–903

    Article  CAS  PubMed  Google Scholar 

  104. Rouzet F, Bachelet-Violette L, Alsac JM et al (2011) Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J Nucl Med 52:1433–1440

    Article  CAS  PubMed  Google Scholar 

  105. Jacobin-Valat MJ, Deramchia K, Mornet S et al (2011) MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed 24:413–424

    CAS  PubMed  Google Scholar 

  106. Gawaz M, Stellos K, Langer HF (2008) Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells. J Thromb Haemost 6:235–242

    Article  CAS  PubMed  Google Scholar 

  107. Gawaz M (2004) Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 61:498–511

    Article  CAS  PubMed  Google Scholar 

  108. Peter K, Ahrens I, Schwarz M et al (2004) Distinct roles of ligand affinity and cytoskeletal anchorage in alphaIIbbeta3 (GP IIb/IIIa)-mediated cell aggregation and adhesion. Platelets 15:427–438

    Article  CAS  PubMed  Google Scholar 

  109. Stoll P, Bassler N, Hagemeyer CE et al (2007) Targeting ligand-induced binding sites on GPIIb/IIIa via single-chain antibody allows effective anticoagulation without bleeding time prolongation. Arterioscler Thromb Vasc Biol 27:1206–1212

    Article  CAS  PubMed  Google Scholar 

  110. Schwarz M, Katagiri Y, Kotani M et al (2004) Reversibility versus persistence of GPIIb/IIIa blocker-induced conformational change of GPIIb/IIIa (alphaIIbbeta3, CD41/CD61). J Pharmacol Exp Ther 308:1002–1011

    Article  CAS  PubMed  Google Scholar 

  111. von Elverfeldt D, Meissner M, Peter K et al (2012) An approach towards molecular imaging of activated platelets allows imaging of symptomatic human carotid plaques in a new model of a tissue flow chamber. Contrast Media Mol Imaging 7:204–213

    Article  CAS  Google Scholar 

  112. von Zur Muhlen C, von Elverfeldt D, Choudhury RP et al (2008) Functionalized magnetic resonance contrast agent selectively binds to glycoprotein IIb/IIIa on activated human platelets under flow conditions and is detectable at clinically relevant field strengths. Mol Imaging 7:59–67

    Google Scholar 

  113. Johansson LO, Bjornerud A, Ahlstrom HK et al (2001) A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 13:615–618

    Article  CAS  PubMed  Google Scholar 

  114. Schwarz M, Meade G, Stoll P et al (2006) Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res 99:25–33

    Article  CAS  PubMed  Google Scholar 

  115. Makowski MR, Wiethoff AJ, Blume U et al (2011) Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17:383–388

    Article  CAS  PubMed  Google Scholar 

  116. Makowski MR, Preissel A, von Bary C et al (2012) Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Invest Radiol 47:438–444

    Article  CAS  PubMed  Google Scholar 

  117. Sanders HM, Strijkers GJ, Mulder WJ et al (2009) Morphology, binding behavior and MR-properties of paramagnetic collagen-binding liposomes. Contrast Media Mol Imaging 4:81–88

    Article  CAS  PubMed  Google Scholar 

  118. Klink A, Heynens J, Herranz B et al (2011) In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 58:2522–2530

    Article  PubMed Central  PubMed  Google Scholar 

  119. Shah PK, Galis ZS (2001) Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but questions remain. Circulation 104:1878–1880

    CAS  PubMed  Google Scholar 

  120. Johnson JL (2007) Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 5:265–282

    Article  CAS  PubMed  Google Scholar 

  121. Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624

    Article  CAS  PubMed  Google Scholar 

  122. Quillard T, Croce K, Jaffer FA et al (2011) Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. J Thromb Haemost 105:828–836

    Article  CAS  Google Scholar 

  123. Lancelot E, Amirbekian V, Brigger I et al (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432

    Article  CAS  PubMed  Google Scholar 

  124. Amirbekian V, Aguinaldo JG, Amirbekian S et al (2009) Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology 251:429–438

    Article  PubMed Central  PubMed  Google Scholar 

  125. Hyafil F, Vucic E, Cornily JC et al (2011) Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J 32:1561–1571

    Article  PubMed Central  PubMed  Google Scholar 

  126. Ronald JA, Chen JW, Chen Y et al (2009) Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120:592–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Chen JW, Querol Sans M, Bogdanov A Jr et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481

    Article  PubMed  Google Scholar 

  128. Pulli B, Ali M, Forghani R et al (2013) Measuring myeloperoxidase activity in biological samples. PLoS One 8:e67976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Majmudar MD, Keliher EJ, Heidt T et al (2013) Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127:2038–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Hamoudeh M, Fessi H (2006) Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles. J Colloid Interface Sci 300:584–590

    Article  CAS  PubMed  Google Scholar 

  131. Hemmingsson A, Carlsten J, Ericsson A et al (1987) Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol 28:703–705

    Article  CAS  PubMed  Google Scholar 

  132. Zhu D, White RD, Hardy PA et al (2006) Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. J Nanosci Nanotechnol 6:996–1003

    Article  CAS  PubMed  Google Scholar 

  133. Chen HH, Le Visage C, Qiu B et al (2005) MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med 53:614–620

    Article  CAS  PubMed  Google Scholar 

  134. Perez-Balderas F, Davis BG, Van Kasteren SI, Khrapichev A, Anthony DC, Sibson NR (2010) Multimeric iron oxide micro particles: novel high sensitivity and biodegradable MRI contrast agents. Int Soc Magn Reson Med 18:1899

    Google Scholar 

  135. Perez-Balderas F, Davis BG, van Kasteren SI, Khrapichev A, Jefferson A, Bristow C, Serres S, Choudhury RP, Anthony DC, Sibson NR (2011) New biodegradable multimeric MPIO contrast agent shows rapid in vitro and in vivo degradation and high sensitivity contrast. Proc Int Soc Magn Reson Med 19:1689

    Google Scholar 

  136. Quillard T, Libby P (2012) Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res 111:231–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Phinikaridou A, Andia ME, Lacerda S et al (2013) Molecular MRI of atherosclerosis. Molecules 18:14042–14069

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina A. McAteer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McAteer, M.A., Choudhury, R.P. (2015). Noninvasive Molecular Imaging of Mouse Atherosclerosis. In: Andrés, V., Dorado, B. (eds) Methods in Mouse Atherosclerosis. Methods in Molecular Biology, vol 1339. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2929-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2929-0_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2928-3

  • Online ISBN: 978-1-4939-2929-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics