Skip to main content

Intravital Microscopy for Atherosclerosis Research

  • Protocol
Methods in Mouse Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1339))

Abstract

Recruitment of leukocytes into arteries is a hallmark event throughout all stages of atherosclerosis and hence stands out as a primary therapeutic target. To understand the molecular mechanisms of arterial leukocyte subset infiltration, real-time visualization of recruitment processes of leukocyte subsets at high resolution is a prerequisite. In this review we provide a balanced overview of optical imaging modalities in the more commonly used experimental models for atherosclerosis (e.g., mouse models) allowing for in vivo display of recruitment processes in large arteries and further detail strategies to overcome hurdles inherent to arterial imaging. We further provide a synopsis of techniques allowing for non-toxic, photostable labeling of target structures. Finally, we deliver a short summary of ongoing developments including the emergence of novel labeling approaches, the use of superresolution microscopy, and the potentials of opto-acoustic microscopy and intravascular 2-dimensional near-infrared fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aulchenko YS, Ripatti S, Lindqvist I et al (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41:47–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169

    Article  CAS  PubMed  Google Scholar 

  3. Soehnlein O, Drechsler M, Hristov M et al (2009) Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. J Cell Mol Med 13:4293–4303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  5. Drechsler M, Megens RT, van Zandvoort M et al (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122:1837–1845

    Article  CAS  PubMed  Google Scholar 

  6. Soehnlein O, Drechsler M, Doring Y et al (2013) Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Mol Med 5:471–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wantha S, Alard JE, Megens RT et al (2013) Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 112:792–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Doring Y, Drechsler M, Wantha S et al (2012) Lack of neutrophil-derived cramp reduces atherosclerosis in mice. Circ Res 110:1052–1056

    Article  PubMed  Google Scholar 

  9. Soehnlein O, Xie X, Ulbrich H et al (2005) Neutrophil-derived heparin-binding protein (hbp/cap37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol 174:6399–6405

    Article  CAS  PubMed  Google Scholar 

  10. Llodra J, Angeli V, Liu J et al (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci U S A 101:11779–11784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Robbins CS, Hilgendorf I, Weber GF et al (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Eriksson EE (2011) Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation 124:2129–2138

    Article  CAS  PubMed  Google Scholar 

  13. Hellings WE, Peeters W, Moll FL et al (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950

    Article  PubMed  Google Scholar 

  14. Sluimer JC, Kolodgie FD, Bijnens AP et al (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53:1517–1527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Silvestre-Roig C, de Winther MP, Weber C et al (2014) Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 114:214–226

    Article  CAS  PubMed  Google Scholar 

  16. Lee S, Vinegoni C, Feruglio PF et al (2012) Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat Commun 3:1054

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lammermann T, Afonso PV, Angermann BR et al (2013) Neutrophil swarms require ltb4 and integrins at sites of cell death in vivo. Nature 498:371–375

    Article  PubMed  Google Scholar 

  18. Looney MR, Thornton EE, Sen D et al (2011) Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8:91–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Leuschner F, Panizzi P, Chico-Calero I et al (2010) Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107:1364–1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. van Gestel MA, Heemskerk JW, Slaaf DW et al (2003) In vivo blockade of platelet adp receptor p2y12 reduces embolus and thrombus formation but not thrombus stability. Arterioscler Thromb Vasc Biol 23:518–523

    Article  PubMed  Google Scholar 

  21. Proebstl D, Voisin MB, Woodfin A et al (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Soehnlein O, Zernecke A, Eriksson EE et al (2008) Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112:1461–1471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kempf T, Zarbock A, Widera C et al (2011) Gdf-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588

    Article  CAS  PubMed  Google Scholar 

  24. Megens RT, Reitsma S, Prinzen L et al (2010) In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy. J Biomed Opt 15:011108

    Article  PubMed  Google Scholar 

  25. Reitsma S, Oude Egbrink MG, Heijnen VV et al (2011) Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thromb Haemost 106:939–946

    Article  CAS  PubMed  Google Scholar 

  26. Soehnlein O, Wantha S, Simsekyilmaz S et al (2011) Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med 3:103ra198

    Article  Google Scholar 

  27. Lutgens E, Lievens D, Beckers L et al (2010) Deficient cd40-traf6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207:391–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Massberg S, Gawaz M, Gruner S et al (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yipp BG, Petri B, Salina D et al (2012) Infection-induced netosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18:1386–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wilson T (2010) Spinning-disk microscopy systems. Cold Spring Harb Protoc 2010:pdb.top88

    Article  PubMed  Google Scholar 

  31. Fan GY, Fujisaki H, Miyawaki A et al (1999) Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J 76:2412–2420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chevre R, Gonzalez-Granado JM, Megens RT et al (2014) High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ Res 114:770–779

    Article  CAS  PubMed  Google Scholar 

  33. van Zandvoort M, Engels W, Douma K et al (2004) Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study. J Vasc Res 41:54–63

    Article  PubMed  Google Scholar 

  34. Niesner RA, Andresen V, Gunzer M (2008) Intravital two-photon microscopy: focus on speed and time resolved imaging modalities. Immunol Rev 221:7–25

    Article  CAS  PubMed  Google Scholar 

  35. Kurtz R, Fricke M, Kalb J et al (2006) Application of multiline two-photon microscopy to functional in vivo imaging. J Neurosci Methods 151:276–286

    Article  PubMed  Google Scholar 

  36. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  37. Janssen BJ, De Celle T, Debets JJ et al (2004) Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol 287:H1618–H1624

    Article  CAS  PubMed  Google Scholar 

  38. Kreisel D, Nava RG, Li W et al (2010) In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A 107:18073–18078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lockett AD, Brown MB, Santos-Falcon N et al (2014) Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS One 9:e93979

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rademakers T, Douma K, Hackeng TM et al (2013) Plaque-associated vasa vasorum in aged apolipoprotein e-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler Thromb Vasc Biol 33:249–256

    Article  CAS  PubMed  Google Scholar 

  41. Schmitt MM, Megens RT, Zernecke A et al (2014) Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 129:66–76

    Article  CAS  PubMed  Google Scholar 

  42. Megens RT, Vijayan S, Lievens D et al (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107:597–598

    Article  CAS  PubMed  Google Scholar 

  43. Reutelingsperger CP, Dumont E, Thimister PW et al (2002) Visualization of cell death in vivo with the annexin a5 imaging protocol. J Immunol Methods 265:123–132

    Article  CAS  PubMed  Google Scholar 

  44. Yu W, Braz JC, Dutton AM et al (2007) In vivo imaging of atherosclerotic plaques in apolipoprotein e deficient mice using nonlinear microscopy. J Biomed Opt 12:054008

    Article  PubMed  Google Scholar 

  45. Nahrendorf M, Swirski FK (2014) Fluorescent leukocytes enter plaque on the microscope stage. Circ Res 114:740–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor cx(3)cr1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Tacke F, Alvarez D, Kaplan TJ et al (2007) Monocyte subsets differentially employ ccr2, ccr5, and cx3cr1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Saederup N, Cardona AE, Croft K et al (2010) Selective chemokine receptor usage by central nervous system myeloid cells in ccr2-red fluorescent protein knock-in mice. PLoS One 5:e13693

    Article  PubMed Central  PubMed  Google Scholar 

  49. Abe T, Sakaue-Sawano A, Kiyonari H et al (2013) Visualization of cell cycle in mouse embryos with fucci2 reporter directed by rosa26 promoter. Development 140:237–246

    Article  CAS  PubMed  Google Scholar 

  50. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  PubMed  Google Scholar 

  51. Stockholm D, Bartoli M, Sillon G et al (2005) Imaging calpain protease activity by multiphoton fret in living mice. J Mol Biol 346:215–222

    Article  CAS  PubMed  Google Scholar 

  52. Kardash E, Reichman-Fried M, Maitre JL et al (2010) A role for rho gtpases and cell-cell adhesion in single-cell motility in vivo. Nat Cell Biol 12:47–53, sup pp 1–11

    Article  CAS  PubMed  Google Scholar 

  53. Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Victora GD, Schwickert TA, Fooksman DR et al (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Last’ovicka J, Budinsky V, Spisek R et al (2009) Assessment of lymphocyte proliferation: Cfse kills dividing cells and modulates expression of activation markers. Cell Immunol 256:79–85

    Article  PubMed  Google Scholar 

  56. Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508

    Article  CAS  PubMed  Google Scholar 

  57. Zhao H, Traganos F, Dobrucki J et al (2009) Induction of DNA damage response by the supravital probes of nucleic acids. Cytometry A 75:510–519

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mempel TR, Pittet MJ, Khazaie K et al (2006) Regulatory t cells reversibly suppress cytotoxic t cell function independent of effector differentiation. Immunity 25:129–141

    Article  CAS  PubMed  Google Scholar 

  59. Horan PK, Slezak SE (1989) Stable cell membrane labelling. Nature 340:167–168

    Article  CAS  PubMed  Google Scholar 

  60. Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Joseph C, Quach JM, Walkley CR et al (2013) Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13:520–533

    Article  CAS  PubMed  Google Scholar 

  62. Chiang EY, Hidalgo A, Chang J et al (2007) Imaging receptor microdomains on leukocyte subsets in live mice. Nat Methods 4:219–222

    Article  CAS  PubMed  Google Scholar 

  63. Daley JM, Thomay AA, Connolly MD et al (2008) Use of ly6g-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83:64–70

    Article  CAS  PubMed  Google Scholar 

  64. Wang JX, Bair AM, King SL et al (2012) Ly6g ligation blocks recruitment of neutrophils via a beta2-integrin-dependent mechanism. Blood 120:1489–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kunkel EJ, Chomas JE, Ley K (1998) Role of primary and secondary capture for leukocyte accumulation in vivo. Circ Res 82:30–38

    Article  CAS  PubMed  Google Scholar 

  66. Moreau HD, Lemaitre F, Terriac E et al (2012) Dynamic in situ cytometry uncovers t cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37:351–363

    Article  CAS  PubMed  Google Scholar 

  67. Zhao W, Schafer S, Choi J et al (2011) Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol 6:524–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Shcherbo D, Shemiakina II, Ryabova AV et al (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shu X, Royant A, Lin MZ et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807

    Article  PubMed Central  PubMed  Google Scholar 

  70. Filonov GS, Piatkevich KD, Ting LM et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Herz J, Siffrin V, Hauser AE et al (2010) Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys J 98:715–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kawano H, Kogure T, Abe Y et al (2008) Two-photon dual-color imaging using fluorescent proteins. Nat Methods 5:373–374

    Article  CAS  PubMed  Google Scholar 

  73. Abbe E (1873) Ueber einen neuen beleuchtungsapparat am mikroskop. In: Schultze M (ed) Archive für mikrosckopische anatomie. Verlag von Max Cohen Sohn, Bonn, pp 469–481

    Google Scholar 

  74. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  75. Muller T, Schumann C, Kraegeloh A (2012) Sted microscopy and its applications: new insights into cellular processes on the nanoscale. ChemPhysChem 13:1986–2000

    Article  PubMed  Google Scholar 

  76. Lauterbach MA, Keller J, Schonle A et al (2010) Comparing video-rate sted nanoscopy and confocal microscopy of living neurons. J Biophotonics 3:417–424

    Article  PubMed  Google Scholar 

  77. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551

    Article  CAS  PubMed  Google Scholar 

  78. Wurm CA, Kolmakov K, Göttfert F et al (2012) Novel red fluorophores with superior performance in sted microscopy. Opt Nanoscopy 1:1–7

    Article  Google Scholar 

  79. Lavoie-Cardinal F, Jensen NA, Westphal V et al (2014) Two-color resolft nanoscopy with green and red fluorescent photochromic proteins. ChemPhysChem 15:655–663

    Article  CAS  PubMed  Google Scholar 

  80. Grotjohann T, Testa I, Leutenegger M et al (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic gfp. Nature 478:204–208

    Article  CAS  PubMed  Google Scholar 

  81. Grotjohann T, Testa I, Reuss M et al (2012) Rsegfp2 enables fast resolft nanoscopy of living cells. eLife 1:e00248

    Article  PubMed Central  PubMed  Google Scholar 

  82. Chmyrov A, Keller J, Grotjohann T et al (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10:737–740

    Article  CAS  PubMed  Google Scholar 

  83. Nienhaus K, Nienhaus GU (2014) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 43:1088–1106

    Article  CAS  PubMed  Google Scholar 

  84. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (msot). Chem Rev 110:2783–2794

    Article  CAS  PubMed  Google Scholar 

  85. Buehler A, Herzog E, Razansky D et al (2010) Video rate optoacoustic tomography of mouse kidney perfusion. Opt Lett 35:2475–2477

    Article  PubMed  Google Scholar 

  86. Ma R, Taruttis A, Ntziachristos V et al (2009) Multispectral optoacoustic tomography (msot) scanner for whole-body small animal imaging. Opt Express 17:21414–21426

    Article  CAS  PubMed  Google Scholar 

  87. Razansky D, Vinegoni C, Ntziachristos V (2009) Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography. Phys Med Biol 54:2769–2777

    Article  PubMed  Google Scholar 

  88. Razansky D, Deliolanis NC, Vinegoni C et al (2012) Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharm Biotechnol 13:504–522

    Article  CAS  PubMed  Google Scholar 

  89. Omar M, Gateau J, Ntziachristos V (2013) Raster-scan optoacoustic mesoscopy in the 25-125 mhz range. Opt Lett 38:2472–2474

    Article  PubMed  Google Scholar 

  90. Tserevelakis GJ, Soliman D, Omar M et al (2014) Hybrid multiphoton and optoacoustic microscope. Opt Lett 39:1819–1822

    Article  PubMed  Google Scholar 

  91. Taruttis A, Ntziachristos V (2012) Translational optical imaging. AJR Am J Roentgenol 199:263–271

    Article  PubMed  Google Scholar 

  92. Ntziachristos V, Razansky D (2013) Optical and opto-acoustic imaging. Recent Results Cancer Res 187:133–150

    Article  PubMed  Google Scholar 

  93. Yao J, Wang LV (2013) Photoacoustic microscopy. Laser Photon Rev 7:758

    Article  Google Scholar 

  94. Jaffer FA, Calfon MA, Rosenthal A et al (2011) Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 57:2516–2526

    Article  PubMed Central  PubMed  Google Scholar 

  95. Calfon MA, Rosenthal A, Mallas G, et al (2011) In vivo near infrared fluorescence (nirf) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis. J Vis Exp (54):e2257

    Google Scholar 

  96. Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163

    Article  CAS  PubMed  Google Scholar 

  97. Faust N, Varas F, Kelly LM et al (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726

    CAS  PubMed  Google Scholar 

  98. Boes M, Cerny J, Massol R et al (2002) T-cell engagement of dendritic cells rapidly rearranges mhc class ii transport. Nature 418:983–988

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors’ is supported by the DFG (SO876/3-1, SO876/6-1, SFB914 TP B08, SFB1123 TPs A06, B05, Z01, INST409/97-1), the Else Kröner Fresenius Stiftung, the NWO (VIDI project 91712303), the LMUexcellence, and the FöFoLe program of the LMU Munich.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Remco T. A. Megens or Oliver Soehnlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Megens, R.T.A., Soehnlein, O. (2015). Intravital Microscopy for Atherosclerosis Research. In: Andrés, V., Dorado, B. (eds) Methods in Mouse Atherosclerosis. Methods in Molecular Biology, vol 1339. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2929-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2929-0_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2928-3

  • Online ISBN: 978-1-4939-2929-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics