Skip to main content

Use of Mouse Models in Atherosclerosis Research

  • Protocol
Methods in Mouse Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1339))

Abstract

Cardiovascular disease is the major cause of death in most developed nations and the social and economic burden of this disease is quite high. Atherosclerosis is a major underlying basis for most cardiovascular diseases including myocardial infarction and stroke. Genetically modified mouse models, particularly mice deficient in apoprotein E or the LDL receptor, have been widely used in preclinical atherosclerosis studies to gain insight into the mechanisms underlying this pathology. This chapter reviews several mouse models of atherosclerosis progression and regression as well as the role of immune cells in disease progression and the genetics of murine atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. VanderLaan PA, Reardon CA, Getz GS (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24:12–22

    Article  CAS  PubMed  Google Scholar 

  2. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32:1104–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  4. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Witztum JL, Lichtman AH (2014) The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol 9:73–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brown MS, Goldstein JL (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50(Suppl):S15–S27

    PubMed Central  PubMed  Google Scholar 

  7. Scull CM, Tabas I (2011) Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol 31:2792–2797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Thorp E, Subramanian M, Tabas I (2011) The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. Eur J Immunol 41:2515–2518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lichtman AH, Binder CJ, Tsimikas S, Witztum JL (2013) Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest 123:27–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212

    Article  CAS  PubMed  Google Scholar 

  11. Wissler RW, Eilert ML, Schroeder MA, Cohen L (1954) Production of lipomatous and atheromatous arterial lesions in the albino rat. AMA Arch Pathol 57:333–351

    CAS  PubMed  Google Scholar 

  12. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  CAS  PubMed  Google Scholar 

  13. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  CAS  PubMed  Google Scholar 

  14. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  CAS  PubMed  Google Scholar 

  15. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD, Schrenzel M, Krieger M (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90:270–276

    Article  CAS  PubMed  Google Scholar 

  17. Bradshaw G, Gutierrez A, Miyake JH, Davis KR, Li AC, Glass CK, Curtiss LK, Davis RA (2005) Facilitated replacement of Kupffer cells expressing a paraoxonase-1 transgene is essential for ameliorating atherosclerosis in mice. Proc Natl Acad Sci U S A 102:11029–11034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hasty AH, Linton MF, Swift LL, Fazio S (1999) Determination of the lower threshold of apolipoprotein E resulting in remnant lipoprotein clearance. J Lipid Res 40:1529–1538

    CAS  PubMed  Google Scholar 

  19. Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50(Suppl):S156–S161

    PubMed Central  PubMed  Google Scholar 

  20. Linton MF, Fazio S (1999) Macrophages, lipoprotein metabolism, and atherosclerosis: insights from murine bone marrow transplantation studies. Curr Opin Lipidol 10:97–105

    Article  CAS  PubMed  Google Scholar 

  21. Fazio S, Babaev VR, Murray AB, Hasty AH, Carter KJ, Gleaves LA, Atkinson JB, Linton MF (1997) Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci U S A 94:4647–4652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Van Eck M, Herijgers N, Vidgeon-Hart M, Pearce NJ, Hoogerbrugge PM, Groot PH, Van Berkel TJ (2000) Accelerated atherosclerosis in C57Bl/6 mice transplanted with ApoE-deficient bone marrow. Atherosclerosis 150:71–80

    Article  PubMed  Google Scholar 

  23. Hasty AH, Linton MF, Brandt SJ, Babaev VR, Gleaves LA, Fazio S (1999) Retroviral gene therapy in ApoE-deficient mice: ApoE expression in the artery wall reduces early foam cell lesion formation. Circulation 99:2571–2576

    Article  CAS  PubMed  Google Scholar 

  24. Fazio S, Babaev VR, Burleigh ME, Major AS, Hasty AH, Linton MF (2002) Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J Lipid Res 43:1602–1609

    Article  CAS  PubMed  Google Scholar 

  25. Huang ZH, Reardon CA, Subbaiah PV, Getz GS, Mazzone T (2013) ApoE derived from adipose tissue does not suppress atherosclerosis or correct hyperlipidemia in apoE knockout mice. J Lipid Res 54:202–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Teupser D, Persky AD, Breslow JL (2003) Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscler Thromb Vasc Biol 23:1907–1913

    Article  CAS  PubMed  Google Scholar 

  27. Getz GS, Reardon CA (2006) Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 26:242–249

    Article  CAS  PubMed  Google Scholar 

  28. Curtiss LK, Black AS, Bonnet DJ, Tobias PS (2012) Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. J Lipid Res 53:2126–2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Subramanian S, Han CY, Chiba T, McMillen TS, Wang SA, Haw A 3rd, Kirk EA, O’Brien KD, Chait A (2008) Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28:685–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, O’Brien K, Getz GS, Reardon CA, Chait A (2013) Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. J Lipid Res 54:2831–2841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hartvigsen K, Binder CJ, Hansen LF, Rafia A, Juliano J, Horkko S, Steinberg D, Palinski W, Witztum JL, Li AC (2007) A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome. Arterioscler Thromb Vasc Biol 27:878–885

    Article  CAS  PubMed  Google Scholar 

  32. Boisvert WA, Spangenberg J, Curtiss LK (1997) Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 17:340–347

    Article  CAS  PubMed  Google Scholar 

  33. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50(Suppl):S178–S182

    PubMed Central  PubMed  Google Scholar 

  34. van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93:1403–1410

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sanan DA, Newland DL, Tao R, Marcovina S, Wang J, Mooser V, Hammer RE, Hobbs HH (1998) Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a). Proc Natl Acad Sci U S A 95:4544–4549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Powell-Braxton L, Veniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO (1998) A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 4:934–938

    Article  CAS  PubMed  Google Scholar 

  37. Veniant MM, Withycombe S, Young SG (2001) Lipoprotein size and atherosclerosis susceptibility in Apoe(−/−) and Ldlr(−/−) mice. Arterioscler Thromb Vasc Biol 21:1567–1570

    Article  CAS  PubMed  Google Scholar 

  38. Duff GL, Mc MG (1948) The inhibition of experimental cholesterol atherosclerosis by alloxan diabetes in the rabbit. Am Heart J 36:469

    Article  CAS  PubMed  Google Scholar 

  39. Nordestgaard BG, Zilversmit DB (1988) Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res 29:1491–1500

    CAS  PubMed  Google Scholar 

  40. Weinstein MM, Yin L, Tu Y, Wang X, Wu X, Castellani LW, Walzem RL, Lusis AJ, Fong LG, Beigneux AP, Young SG (2010) Chylomicronemia elicits atherosclerosis in mice – brief report. Arterioscler Thromb Vasc Biol 30:20–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR (1999) Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 19:1105–1110

    Article  CAS  PubMed  Google Scholar 

  42. Zuckerman SH, Evans GF, Schelm JA, Eacho PI, Sandusky G (1999) Estrogen-mediated increases in LDL cholesterol and foam cell-containing lesions in human ApoB100xCETP transgenic mice. Arterioscler Thromb Vasc Biol 19:1476–1483

    Article  CAS  PubMed  Google Scholar 

  43. de Vries-van der Weij J, Zadelaar S, Toet K, Havekes LM, Kooistra T, Rensen PC (2009) Human CETP aggravates atherosclerosis by increasing VLDL-cholesterol rather than by decreasing HDL-cholesterol in APOE*3-Leiden mice. Atherosclerosis 206:153–158

    Article  CAS  PubMed  Google Scholar 

  44. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 92:8264–8268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Swirski FK, Weissleder R, Pittet MJ (2009) Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 29:1424–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Koltsova EK, Hedrick CC, Ley K (2013) Myeloid cells in atherosclerosis: a delicate balance of anti-inflammatory and proinflammatory mechanisms. Curr Opin Lipidol 24:371–380

    CAS  PubMed  Google Scholar 

  49. Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O (2012) Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 7:e39790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Tall AR, Yvan-Charvet L, Westerterp M, Murphy AJ (2012) Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler Thromb Vasc Biol 32:2547–2552

    Article  CAS  PubMed  Google Scholar 

  51. Soehnlein O, Swirski FK (2013) Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends Endocrinol Metab 24:129–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL, Tall AR, Yvan-Charvet L (2012) Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328:1689–1693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, Gorbatov R, Etzrodt M, Weber GF, Ueno T, van Rooijen N, Mulligan-Kehoe MJ, Libby P, Nahrendorf M, Pittet MJ, Weissleder R, Swirski FK (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125:364–374

    Article  PubMed Central  PubMed  Google Scholar 

  55. Woollard KJ (2013) Immunological aspects of atherosclerosis. Clin Sci (Lond) 125:221–235

    Article  CAS  Google Scholar 

  56. Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38:1092–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Reardon CA, Blachowicz L, Lukens J, Nissenbaum M, Getz GS (2003) Genetic background selectively influences innominate artery atherosclerosis: immune system deficiency as a probe. Arterioscler Thromb Vasc Biol 23:1449–1454

    Article  CAS  PubMed  Google Scholar 

  58. Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100:1575–1580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 94:4642–4646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, Loinard C, Binder CJ, Mallat Z (2012) BAFF receptor deficiency reduces the development of atherosclerosis in mice – brief report. Arterioscler Thromb Vasc Biol 32:1573–1576

    Article  CAS  PubMed  Google Scholar 

  61. Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, Kehry M, Dunn R, Agrotis A, Tipping P, Bobik A, Toh BH (2010) Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 185:4410–4419

    Article  CAS  PubMed  Google Scholar 

  62. Tsiantoulas D, Gruber S, Binder CJ (2012) B-1 cell immunoglobulin directed against oxidation-specific epitopes. Front Immunol 3:415

    PubMed Central  PubMed  Google Scholar 

  63. Nilsson J, Bjorkbacka H, Fredrikson GN (2012) Apolipoprotein B100 autoimmunity and atherosclerosis - disease mechanisms and therapeutic potential. Curr Opin Lipidol 23:422–428

    Article  CAS  PubMed  Google Scholar 

  64. Zhou X, Robertson AK, Hjerpe C, Hansson GK (2006) Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 26:864–870

    Article  CAS  PubMed  Google Scholar 

  65. Butcher M, Galkina E (2011) Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thromb Haemost 106:787–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  CAS  PubMed  Google Scholar 

  67. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  68. Getz GS, Vanderlaan PA, Reardon CA (2011) Natural killer T cells in lipoprotein metabolism and atherosclerosis. Thromb Haemost 106:814–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Gotsman I, Sharpe AH, Lichtman AH (2008) T-cell costimulation and coinhibition in atherosclerosis. Circ Res 103:1220–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Stylianou IM, Bauer RC, Reilly MP, Rader DJ (2012) Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 110:337–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Rodriguez JM, Wolfrum S, Robblee M, Chen KY, Gilbert ZN, Choi JH, Teupser D, Breslow JL (2013) Altered expression of Raet1e, a major histocompatibility complex class 1-like molecule, underlies the atherosclerosis modifier locus Ath11 10b. Circ Res 113:1054–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Tomita H, Hagaman J, Friedman MH, Maeda N (2012) Relationship between hemodynamics and atherosclerosis in aortic arches of apolipoprotein E-null mice on 129S6/SvEvTac and C57BL/6J genetic backgrounds. Atherosclerosis 220:78–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ghazalpour A, Rau CD, Farber CR, Bennett BJ, Orozco LD, van Nas A, Pan C, Allayee H, Beaven SW, Civelek M, Davis RC, Drake TA, Friedman RA, Furlotte N, Hui ST, Jentsch JD, Kostem E, Kang HM, Kang EY, Joo JW, Korshunov VA, Laughlin RE, Martin LJ, Ohmen JD, Parks BW, Pellegrini M, Reue K, Smith DJ, Tetradis S, Wang J, Wang Y, Weiss JN, Kirchgessner T, Gargalovic PS, Eskin E, Lusis AJ, LeBoeuf RC (2012) Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome 23:680–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Williams KJ, Feig JE, Fisher EA (2008) Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med 5:91–102

    Article  CAS  PubMed  Google Scholar 

  75. Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ, Fisher EA (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A 103:3781–3786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Reis ED, Li J, Fayad ZA, Rong JX, Hansoty D, Aguinaldo JG, Fallon JT, Fisher EA (2001) Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. J Vasc Surg 34:541–547

    Article  CAS  PubMed  Google Scholar 

  77. Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA (2011) HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 108:7166–7171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121:2921–2931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Levin N, Bischoff ED, Daige CL, Thomas D, Vu CT, Heyman RA, Tangirala RK, Schulman IG (2005) Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 25:135–142

    Article  CAS  PubMed  Google Scholar 

  80. Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG (2003) Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107:1315–1321

    Article  PubMed  Google Scholar 

  81. Hewing B, Parathath S, Mai CK, Fiel MI, Guo L, Fisher EA (2013) Rapid regression of atherosclerosis with MTP inhibitor treatment. Atherosclerosis 227:125–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Raffai RL, Loeb SM, Weisgraber KH (2005) Apolipoprotein E promotes the regression of atherosclerosis independently of lowering plasma cholesterol levels. Arterioscler Thromb Vasc Biol 25:436–441

    Article  CAS  PubMed  Google Scholar 

  83. Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, Bogunovic D, Gautier EL, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, Bhardwaj N, Garabedian M, Tontonoz P, Fisher EA (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120:4415–4424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Feig JE, Shang Y, Rotllan N, Vengrenyuk Y, Wu C, Shamir R, Torra IP, Fernandez-Hernando C, Fisher EA, Garabedian MJ (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS One 6:e28534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kita T, Yamashita T, Sasaki N, Kasahara K, Sasaki Y, Yodoi K, Takeda M, Nakajima K, Hirata K (2014) Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc Res 102:107–117

    Article  CAS  PubMed  Google Scholar 

  86. Foks AC, van Puijvelde GH, Bot I, ter Borg MN, Habets KL, Johnson JL, Yagita H, van Berkel TJ, Kuiper J (2013) Interruption of the OX40-OX40 ligand pathway in LDL receptor-deficient mice causes regression of atherosclerosis. J Immunol 191:4573–4580

    Article  CAS  PubMed  Google Scholar 

  87. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godfrey S. Getz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Getz, G.S., Reardon, C.A. (2015). Use of Mouse Models in Atherosclerosis Research. In: Andrés, V., Dorado, B. (eds) Methods in Mouse Atherosclerosis. Methods in Molecular Biology, vol 1339. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2929-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2929-0_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2928-3

  • Online ISBN: 978-1-4939-2929-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics