Skip to main content

Analysis of CDK Inhibitor Action on Mitochondria-Mediated Apoptosis

  • Protocol
Cyclin-Dependent Kinase (CDK) Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1336))

  • 1883 Accesses

Abstract

The role of cyclin-dependent kinase inhibitors (CDKIs) is to negatively regulate cyclin-dependent kinases as a mechanism of control of cell proliferation. As such, CDKIs are being used to induce apoptosis in cancer cells to prevent their excessive reproduction. This chapter describes procedures to study apoptosis induction upon treatment with any CDKI through the evaluation of morphological and functional mitochondrial alterations, in particular, how to measure the mitochondrial membrane potential (ΔΨm) using TMRE dye, determine the content of intracellular ATP, observe mitochondrial network morphology using HeLa cells stably expressing fluorescent reporter DsRed targeting mitochondrial matrix, observe ultrastructure of the organelle using transmission electron microscopy, and, finally, assure that mitochondrial outer membrane permeabilization takes place by assessing the subcellular localization of cyt C in HeLa cells stably expressing fluorescent cyt C-GFP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malumbres M, Harlow E, Hunt T et al (2009) Cyclin-dependent kinases: a family portrait. Nat Cell Biol 11:1275–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Guha M (2012) Cyclin-dependent kinase inhibitors move into Phase III. Nat Rev Drug Discov 11:892–894

    Article  PubMed  Google Scholar 

  3. Krystof V, Uldrijan S (2010) Cyclin-dependent kinase inhibitors as anticancer drugs. Curr Drug Targets 11:291–302

    Article  CAS  PubMed  Google Scholar 

  4. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8:547–566

    Article  CAS  PubMed  Google Scholar 

  5. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  7. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Zhu H, Xu CJ et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  9. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  10. Ikegami K, Koike T (2003) Non-apoptotic neurite degeneration in apoptotic neuronal death: pivotal role of mitochondrial function in neurites. Neuroscience 122:617–626

    Article  CAS  PubMed  Google Scholar 

  11. Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  12. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B et al (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323

    CAS  PubMed  Google Scholar 

  13. Zhang D-W, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  14. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  15. Belmokhtar CA, Hillion J, Ségal-Bendirdjian E (2001) Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20:3354–3362

    Article  CAS  PubMed  Google Scholar 

  16. Pradelli LA, Bénéteau M, Ricci J-E (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67:1589–1597

    Article  CAS  PubMed  Google Scholar 

  17. Tait SWG, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ehrenberg B, Montana V, Wei MD et al (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 53:785–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    CAS  PubMed  Google Scholar 

  20. Leist M, Single B, Castoldi AF et al (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zamaraeva MV, Sabirov RZ, Maeno E et al (2005) Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 12:1390–1397

    Article  CAS  PubMed  Google Scholar 

  22. Perry SW, Norman JP, Litzburg A et al (2005) HIV-1 transactivator of transcription protein induces mitochondrial hyperpolarization and synaptic stress leading to apoptosis. J Immunol 174:4333–4344

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Tozzi F, Chen J et al (2012) Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res 72:304–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880

    Article  CAS  PubMed  Google Scholar 

  25. Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  CAS  PubMed  Google Scholar 

  27. Giorgi FD, Lartigue L, Ichas F (2000) Electrical coupling and plasticity of the mitochondrial network. Cell Calcium 28:365–370

    Article  PubMed  Google Scholar 

  28. Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26:23–29

    Article  CAS  PubMed  Google Scholar 

  29. Nakada K, Inoue K, Ono T et al (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7:934–940

    Article  CAS  PubMed  Google Scholar 

  30. Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  31. Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  CAS  PubMed  Google Scholar 

  32. Sun MG, Williams J, Munoz-Pinedo C et al (2007) Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol 9:1057–1065

    Article  CAS  PubMed  Google Scholar 

  33. Ward MW, Huber HJ, Weisová P et al (2007) Mitochondrial and plasma membrane potential of cultured cerebellar neurons during glutamate-induced necrosis, apoptosis, and tolerance. J Neurosci 27:8238–8249

    Article  CAS  PubMed  Google Scholar 

  34. Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gortat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gortat, A. (2016). Analysis of CDK Inhibitor Action on Mitochondria-Mediated Apoptosis. In: Orzáez, M., Sancho Medina, M., Pérez-Payá, E. (eds) Cyclin-Dependent Kinase (CDK) Inhibitors. Methods in Molecular Biology, vol 1336. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2926-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2926-9_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2925-2

  • Online ISBN: 978-1-4939-2926-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics