Skip to main content

Expression and Purification of Recombinant CDKs: CDK7, CDK8, and CDK9

  • Protocol
Cyclin-Dependent Kinase (CDK) Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1336))

Abstract

Cyclin-dependent kinases have established roles in the regulation of cell cycle, in gene expression and in cell differentiation. Many of these kinases have been considered as drug targets and numerous efforts have been made to develop specific and potent inhibitors against them. The first step in all of these attempts and in many other biochemical analyses is the production of highly purified and reliable kinase, most frequently in a recombinant form. In this chapter we describe our experience in the cloning, expression, and purification of CDKs using CDK7/CycH, CDK8/CycC, and CDK9/CycT1 as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  2. Andrews B, Measday V (1998) The cyclin family of budding yeast: abundant use of a good idea. Trends Genet 14:66–72

    Article  CAS  PubMed  Google Scholar 

  3. Gopinathan L, Ratnacaram CK, Kaldis P (2011) Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 53:365–389

    Article  CAS  PubMed  Google Scholar 

  4. Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118:5171–5180

    Article  CAS  PubMed  Google Scholar 

  5. Yankulov KY, Bentley DL (1997) Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J 16:1638–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pinhero R, Liaw P, Bertens K, Yankulov K (2004) Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. Eur J Biochem 271:1004–1014

    Article  CAS  PubMed  Google Scholar 

  7. Bhaduri S, Pryciak PM (2011) Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr Biol 21:1615–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J (2011) Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 43:406–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42:610–623

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kobor MS, Greenblatt J (2002) Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 1577:261–275

    Article  CAS  PubMed  Google Scholar 

  11. Egly JM, Coin F (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 10:714–721

    Article  CAS  Google Scholar 

  12. Galbraith MD, Donner AJ, Espinosa JM (2010) CDK8: a positive regulator of transcription. Transcription 1:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20:2629–2634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cho S, Schroeder S, Ott M (2010) CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle 9:1697–1705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ping YH, Rana TM (1999) Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem 274:7399–7404

    Article  CAS  PubMed  Google Scholar 

  16. Yankulov K, Bentley D (1998) Transcriptional control: tat cofactors and transcriptional elongation. Curr Biol 8:R447–R449

    Article  CAS  PubMed  Google Scholar 

  17. Fisher R, Jin P, Chamberlin H, Morgan D (1995) Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–58

    Article  CAS  PubMed  Google Scholar 

  18. Rickert P, Corden JL, Lees E (1999) Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 18:1093–1102

    Article  CAS  PubMed  Google Scholar 

  19. Peng J, Zhu Y, Milton JT, Price DH (1998) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12:755–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yankulov K, Yamashita K, Roy R, Egly JM, Bentley DL (1995) The transcriptional elongation inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase. J Biol Chem 270:23922–23925

    Article  CAS  PubMed  Google Scholar 

  21. Matsuoka M, Kato JY, Fisher RP, Morgan DO, Sherr CJ (1994) Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol Cell Biol 14:7265–7275

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Fisher RP, Morgan DO (1994) A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78:713–724

    Article  CAS  PubMed  Google Scholar 

  23. Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdjument-Bromage H, Tempst P, Suter B, Fisher RP (2001) T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 20:3749–3759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ramanathan Y, Rajpara SM, Reza SM, Lees E, Shuman S, Mathews MB, Pe’ery T (2001) Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J Biol Chem 276:10913–10920

    Article  CAS  PubMed  Google Scholar 

  25. Rossignol M, Kolb-Cheynel I, Egly JM (1997) Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J 16:1628–1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Murhammer DW (2007) Baculovirus and insect cell expression protocols, 2nd edn. Humana Press, Totowa, NJ

    Book  Google Scholar 

  27. Richardson CD (1995) Baculovirus expression protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  28. Kikkawa U, Minakuchi R, Takai Y, Nishizuka Y (1983) Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol 99:288–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. D. Morgan, E. Lees, and D. Price for providing baculoviruses and vectors for the expression of the recombinant kinases. MBP was a gift from Dr. G. Harauz. This study was supported by grants to K. Y. from the Natural Sciences and Engineering Research Council of Canada (NSERC #217548) and the Ontario Genomics Institute (OGI #043567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Yankulov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pinhero, R., Yankulov, K. (2016). Expression and Purification of Recombinant CDKs: CDK7, CDK8, and CDK9. In: Orzáez, M., Sancho Medina, M., Pérez-Payá, E. (eds) Cyclin-Dependent Kinase (CDK) Inhibitors. Methods in Molecular Biology, vol 1336. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2926-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2926-9_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2925-2

  • Online ISBN: 978-1-4939-2926-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics