Skip to main content

Drug Delivery Strategies of Chemical CDK Inhibitors

  • Protocol
Cyclin-Dependent Kinase (CDK) Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1336))

Abstract

The pharmacological use of new therapeutics is often limited by a safe and effective drug-delivery system. In this sense, new chemical CDK inhibitors are not an exception. Nanotechnology may be able to solve some of the main problems limiting cancer treatments such as more specific delivery of therapeutics and reduction of toxic secondary effects. It provides new delivery systems able to specifically target cancer cells and release the active molecules in a controlled fashion. Specifically, silica mesoporous supports (SMPS) have emerged as an alternative for more classical drug delivery systems based on polymers. In this chapter, we describe the synthesis of a SMPS containing the CDK inhibitor roscovitine as cargo molecule and the protocols for confirmation of the proper cargo release of the nanoparticles in cell culture employing cell viability, cellular internalization, and cell death induction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heidel JD, Davis ME (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28(2):187–199

    Article  CAS  PubMed  Google Scholar 

  2. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141

    Article  CAS  PubMed  Google Scholar 

  3. Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605

    Article  CAS  PubMed  Google Scholar 

  4. Mamaeva V, Sahlgren C, Linden M (2013) Mesoporous silica nanoparticles in medicine - recent advances. Adv Drug Deliv Rev 65(5):689–702

    Article  CAS  PubMed  Google Scholar 

  5. Coll C, Bernardos A, Martinez-Manez R, Sancenon F (2013) Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res 46(2):339–349

    Article  CAS  PubMed  Google Scholar 

  6. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  7. Attard GS, Glyde JC, Goltner CG (1995) Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378(6555):366–368

    Article  CAS  Google Scholar 

  8. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  CAS  Google Scholar 

  9. Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  CAS  Google Scholar 

  10. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates - nanoscopic reactors coming of age. Adv Mater 12(19):1403–1419

    Article  CAS  Google Scholar 

  11. Vinu A, Hossain KZ, Ariga K (2005) Recent advances in functionalization of mesoporous silica. J Nanosci Nanotechnol 5(3):347–371

    Article  CAS  PubMed  Google Scholar 

  12. Buolamwini JK (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des 6(4):379–392

    Article  CAS  PubMed  Google Scholar 

  13. McClue SJ, Blake D, Clarke R, Cowan A, Cummings L, Fischer PM, MacKenzie M, Melville J, Stewart K, Wang SD, Zhelev N, Zheleva D, Lane DP (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102(5):463–468

    Article  CAS  PubMed  Google Scholar 

  14. Fischer PM, Gianella-Borradori A (2005) Recent progress in the discovery and development of cyclin-dependant kinase inhibitors. Expert Opin Investig Drugs 14(4):457–477

    Article  CAS  PubMed  Google Scholar 

  15. Bernardos A, Mondragon L, Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Barat JM, Perez-Paya E, Guillem C, Amoros P (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4(11):6353–6368

    Article  CAS  PubMed  Google Scholar 

  16. Coll C, Mondragon L, Martinez-Manez R, Sancenon F, Marcos MD, Soto J, Amoros P, Perez-Paya E (2011) Enzyme-mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew Chem Int Ed 50(9):2138–2140

    Article  CAS  Google Scholar 

  17. de la Torre C, Mondragón L, Coll C, Sancenón F, Marcos MD, Martínez-Máñez R, Amorós P, Pérez-Payá E, Orzáez M (2014) Cathepsin-B induced controlled release from Peptide-capped mesoporous silica nanoparticles. Chem Eur J 20(47):15309–15314

    Article  PubMed  Google Scholar 

  18. Dietrich N, Thastrup J, Holmberg C, Gyrd-Hansen M, Fehrenbacher N, Lademann U, Lerdrup M, Herdegen T, Jaattela M, Kallunki T (2004) JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways. Cell Death Differ 11(3):301–313

    Article  CAS  PubMed  Google Scholar 

  19. Mondragon L, Mas N, Ferragud V, de la Torre C, Agostini A, Martinez-Manez R, Sancenon F, Amoros P, Perez-Paya E, Orzaez M (2014) Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with e-poly-l-lysine. Chem Eur J 20(18):5271–5281

    Article  CAS  PubMed  Google Scholar 

  20. Kruk M, Jaroniec M, Kim JH, Ryoo R (1999) Characterization of highly ordered MCM-41 silicas using X-ray diffraction and nitrogen adsorption. Langmuir 15(16):5279–5284

    Article  CAS  Google Scholar 

  21. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126(41):13216–13217

    Article  CAS  PubMed  Google Scholar 

  22. Kruk M, Jaroniec M, Sakamoto Y, Terasaki O, Ryoo R, Ko CH (2000) Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction. J Phys Chem B 104(2):292–301

    Article  CAS  Google Scholar 

  23. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimollecular layers. J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  24. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  25. Araujo AS, Jaroniec M (2000) Thermogravimetric monitoring of the MCM-41 synthesis. Thermochim Acta 363(1-2):175–180

    Article  CAS  Google Scholar 

  26. Fisichella M, Dabboue H, Bhattacharyya S, Saboungi ML, Salvetat JP, Hevor T, Guerin M (2009) Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol In Vitro 23(4):697–703

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Mondragón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alvira, D., Mondragón, L. (2016). Drug Delivery Strategies of Chemical CDK Inhibitors. In: Orzáez, M., Sancho Medina, M., Pérez-Payá, E. (eds) Cyclin-Dependent Kinase (CDK) Inhibitors. Methods in Molecular Biology, vol 1336. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2926-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2926-9_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2925-2

  • Online ISBN: 978-1-4939-2926-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics