Skip to main content

Identification of Receptor Tyrosine Kinase Inhibitors Using Cell Surface Biotinylation and Affinity Isolation

  • Protocol
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1332))

  • 1970 Accesses

Abstract

The mammalian vascular endothelial growth factor receptor tyrosine kinases (VEGFRs) bind circulating growth factors and regulate the process of angiogenesis. The discovery of new small molecules that target the enzymatic activity of the VEGFR family as potential antiangiogenic drugs is of much commercial interest in the pharmaceutical sector. Here, we describe the use of a combined cell surface biotinylation and affinity isolation procedure to monitor ligand-stimulated VEGFR trafficking in endothelial cells, in which novel VEGFR inhibitors from chemical libraries can be identified by their ability to inhibit receptor internalization. Unlike a traditional cell-free enzyme activity assay, such a cell-based approach provides a physiologically relevant readout of inhibitor activity. In this example, we use the VEGF-A–VEGFR-2 axis and the well-characterized tyrosine kinase inhibitor sunitinib as a working model; however this technique is highly applicable for the identification of inhibitors to other receptor tyrosine kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, San Diego, CA, p 1202

    Google Scholar 

  2. Heitzmann H, Richards FM (1974) Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy. Proc Natl Acad Sci U S A 71:3537–3541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Daniels GM, Amara SG (1998) Selective labeling of neurotransmitter transporters at the cell surface. Methods Enzymol 296:307–318

    Article  CAS  PubMed  Google Scholar 

  4. Barat B, Wu AM (2007) Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol Eng 24:283–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hofmann K, Wood SW, Brinton CC et al (1980) Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc Natl Acad Sci U S A 77:4666–4668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  8. Koch S, Tugues S, Li X et al (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  CAS  PubMed  Google Scholar 

  9. Terman BI, Dougher-Vermazen M, Carrion ME et al (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187:1579–1586

    Article  CAS  PubMed  Google Scholar 

  10. Ewan LC, Jopling HM, Jia H et al (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282

    Article  CAS  PubMed  Google Scholar 

  11. Jopling HM, Howell GJ, Gamper N et al (2011) The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochem Biophys Res Commun 410:170–176

    Article  CAS  PubMed  Google Scholar 

  12. Bruns AF, Bao L, Walker JH et al (2009) VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 37:1193–1197

    Article  CAS  PubMed  Google Scholar 

  13. Bruns AF, Herbert SP, Odell AF et al (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174

    Article  CAS  PubMed  Google Scholar 

  14. Duval M, Bedard-Goulet S, Delisle C et al (2003) Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278:20091–20097

    Article  CAS  PubMed  Google Scholar 

  15. Murdaca J, Treins C, Monthouel-Kartmann MN et al (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 279:26754–26761

    Article  CAS  PubMed  Google Scholar 

  16. Roskoski R Jr (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 356:323–328

    Article  CAS  PubMed  Google Scholar 

  17. Latham AM, Bruns AF, Kankanala J et al (2012) Indolinones and anilinophthalazines differentially target VEGF-A- and basic fibroblast growth factor-mediated responses in primary human endothelial cells. Br J Pharmacol 165:245–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    CAS  PubMed  Google Scholar 

  19. Kankanala J, Latham A, Johnson A et al (2012) A combinatorial in silico and cellular approach to identify a new class of compounds that target VEGFR2 receptor tyrosine kinase activity and angiogenesis. Br J Pharmacol 166:737–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mendel DB, Laird AD, Smolich BD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41

    CAS  PubMed  Google Scholar 

  21. Simard JR, Getlik M, Grutter C et al (2009) Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J Am Chem Soc 131:13286–13296

    Article  CAS  PubMed  Google Scholar 

  22. Tille JC, Wood J, Mandriota SJ et al (2001) Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299:1073–1085

    CAS  PubMed  Google Scholar 

  23. Howell GJ, Herbert SP, Smith JM et al (2004) Endothelial cell confluence regulates Weibel-Palade body formation. Mol Membr Biol 21:413–421

    Article  CAS  PubMed  Google Scholar 

  24. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293

    Article  CAS  PubMed  Google Scholar 

  25. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dunn MJ, Bradd SJ (1993) Separation and analysis of membrane proteins by SDS-polyacrylamide gel electrophoresis. Methods Mol Biol 19:203–210

    CAS  PubMed  Google Scholar 

  27. Bradd SJ, Dunn MJ (1993) Analysis of membrane proteins by western blotting and enhanced chemiluminescence. Methods Mol Biol 19:211–218

    CAS  PubMed  Google Scholar 

  28. Jaffe EA, Nachman RL, Becker CG et al (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  30. Nakache M, Schreiber AB, Gaub H et al (1985) Heterogeneity of membrane phospholipid mobility in endothelial cells depends on cell substrate. Nature 317:75–77

    Article  CAS  PubMed  Google Scholar 

  31. Latham AM, Odell AF, Mughal NA et al (2012) A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A. Exp Cell Res 318:2297–2311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a BBSRC-CASE PhD studentship from Pfizer Global Inc. (A.M.L.), an ORSAS award (J.K.) and a Wellcome Trust project grant (S.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivasan Ponnambalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Latham, A.M., Kankanala, J., Fishwick, C.W.G., Ponnambalam, S. (2015). Identification of Receptor Tyrosine Kinase Inhibitors Using Cell Surface Biotinylation and Affinity Isolation. In: Fiedler, L. (eds) VEGF Signaling. Methods in Molecular Biology, vol 1332. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2917-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2917-7_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2916-0

  • Online ISBN: 978-1-4939-2917-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics