Skip to main content

An Overview of VEGF-Mediated Signal Transduction

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1332))

Abstract

Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    CAS  PubMed  Google Scholar 

  2. Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62:4123–4131

    CAS  PubMed  Google Scholar 

  3. Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835

    CAS  PubMed  Google Scholar 

  4. Bills VL, Salmon AH, Harper SJ et al (2011) Impaired vascular permeability regulation caused by the VEGF(1)(6)(5)b splice variant in pre-eclampsia. BJOG 118:1253–1261

    CAS  PubMed  Google Scholar 

  5. Manetti M, Guiducci S, Romano E et al (2011) Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res 109:E14–E26

    CAS  PubMed  Google Scholar 

  6. Li X, Tjwa M, Van Hove I et al (2008) Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28:1614–1620

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Lahteenvuo JE, Lahteenvuo MT, Kivela A et al (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119:845–856

    PubMed  Google Scholar 

  8. Aase K, von Euler G, Li X et al (2001) Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104:358–364

    CAS  PubMed  Google Scholar 

  9. Bellomo D, Headrick JP, Silins GU et al (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:E29–E35

    CAS  PubMed  Google Scholar 

  10. Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    CAS  PubMed  Google Scholar 

  11. Hagberg CE, Mehlem A, Falkevall A et al (2012) Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490:426–430

    CAS  PubMed  Google Scholar 

  12. Lohela M, Bry M, Tammela T et al (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165

    CAS  PubMed  Google Scholar 

  13. Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    CAS  PubMed  Google Scholar 

  14. Baldwin ME, Halford MM, Roufail S et al (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25:2441–2449

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Jia H, Bagherzadeh A, Bicknell R et al (2004) Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 279:36148–36157

    CAS  PubMed  Google Scholar 

  16. Achen MG, Stacker SA (2012) Vascular endothelial growth factor-D: signaling mechanisms, biology, and clinical relevance. Growth Factors 30:283–296

    CAS  PubMed  Google Scholar 

  17. Migdal M, Huppertz B, Tessler S et al (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 273:22272–22278

    CAS  PubMed  Google Scholar 

  18. Yang W, Ahn H, Hinrichs M et al (2003) Evidence of a novel isoform of placenta growth factor (PlGF-4) expressed in human trophoblast and endothelial cells. J Reprod Immunol 60:53–60

    CAS  PubMed  Google Scholar 

  19. Ziche M, Maglione D, Ribatti D et al (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76:517–531

    CAS  PubMed  Google Scholar 

  20. Kolakowski S Jr, Berry MF, Atluri P et al (2006) Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J Card Surg 21:559–564

    PubMed  Google Scholar 

  21. Park JE, Chen HH, Winer J et al (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654

    CAS  PubMed  Google Scholar 

  22. Cao Y, Linden P, Shima D et al (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest 98:2507–2511

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    CAS  PubMed  Google Scholar 

  24. Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2:re1

    PubMed  Google Scholar 

  25. Fischer C, Mazzone M, Jonckx B et al (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956

    CAS  PubMed  Google Scholar 

  26. Van de Veire S, Stalmans I, Heindryckx F et al (2010) Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141:178–190

    PubMed  Google Scholar 

  27. Khurana R, Simons M, Martin JF et al (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824

    PubMed  Google Scholar 

  28. Zachary IC, Frankel P, Evans IM et al (2009) The role of neuropilins in cell signalling. Biochem Soc Trans 37:1171–1178

    CAS  PubMed  Google Scholar 

  29. Waltenberger J, Claesson-Welsh L, Siegbahn A et al (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995

    CAS  PubMed  Google Scholar 

  30. de Vries C, Escobedo JA, Ueno H et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991

    PubMed  Google Scholar 

  31. Ito N, Wernstedt C, Engstrom U et al (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 273:23410–23418

    CAS  PubMed  Google Scholar 

  32. Gille H, Kowalski J, Yu L et al (2000) A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J 19:4064–4073

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Meyer RD, Mohammadi M, Rahimi N (2006) A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J Biol Chem 281:867–875

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Sawano A, Takahashi T, Yamaguchi S et al (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun 238:487–491

    CAS  PubMed  Google Scholar 

  35. Landgren E, Schiller P, Cao Y et al (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16:359–367

    CAS  PubMed  Google Scholar 

  36. Ito N, Huang K, Claesson-Welsh L (2001) Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell Signal 13:849–854

    CAS  PubMed  Google Scholar 

  37. Cai J, Ahmad S, Jiang WG et al (2003) Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes 52:2959–2968

    CAS  PubMed  Google Scholar 

  38. Clauss M, Weich H, Breier G et al (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271:17629–17634

    CAS  PubMed  Google Scholar 

  39. Tchaikovski V, Fellbrich G, Waltenberger J (2008) The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 28:322–328

    CAS  PubMed  Google Scholar 

  40. Fong GH, Rossant J, Gertsenstein M et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    CAS  PubMed  Google Scholar 

  41. Hiratsuka S, Minowa O, Kuno J et al (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Hiratsuka S, Maru Y, Okada A et al (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61:1207–1213

    CAS  PubMed  Google Scholar 

  43. Hayashibara T, Yamada Y, Miyanishi T et al (2001) Vascular endothelial growth factor and cellular chemotaxis: a possible autocrine pathway in adult T-cell leukemia cell invasion. Clin Cancer Res 7:2719–2726

    CAS  PubMed  Google Scholar 

  44. Lesslie DP, Summy JM, Parikh NU et al (2006) Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer 94:1710–1717

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Mutter WP, Karumanchi SA (2008) Molecular mechanisms of preeclampsia. Microvasc Res 75:1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    CAS  PubMed  Google Scholar 

  47. Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    CAS  PubMed  Google Scholar 

  48. Tammela T, Zarkada G, Nurmi H et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13:1202–1213

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Rosenberg RD (1989) Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism. Am J Med 87:2S–9S

    CAS  PubMed  Google Scholar 

  50. Gitay-Goren H, Soker S, Vlodavsky I et al (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267:6093–6098

    CAS  PubMed  Google Scholar 

  51. Cohen T, Gitay-Goren H, Sharon R et al (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270:11322–11326

    CAS  PubMed  Google Scholar 

  52. Krilleke D, Ng YS, Shima DT (2009) The heparin-binding domain confers diverse functions of VEGF-A in development and disease: a structure-function study. Biochem Soc Trans 37:1201–1206

    CAS  PubMed  Google Scholar 

  53. Grunewald FS, Prota AE, Giese A et al (2010) Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim Biophys Acta 1804:567–580

    PubMed  Google Scholar 

  54. Gengrinovitch S, Berman B, David G et al (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274:10816–10822

    CAS  PubMed  Google Scholar 

  55. Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236

    CAS  PubMed  Google Scholar 

  56. Le Jan S, Hayashi M, Kasza Z et al (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arterioscler Thromb Vasc Biol 32:1255–1263

    PubMed Central  PubMed  Google Scholar 

  57. Pellet-Many C, Frankel P, Jia H et al (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226

    CAS  PubMed  Google Scholar 

  58. Antipenko A, Himanen JP, van Leyen K et al (2003) Structure of the semaphorin-3A receptor binding module. Neuron 39:589–598

    CAS  PubMed  Google Scholar 

  59. Rohm B, Ottemeyer A, Lohrum M et al (2000) Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev 93:95–104

    CAS  PubMed  Google Scholar 

  60. West DC, Rees CG, Duchesne L et al (2005) Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 280:13457–13464

    CAS  PubMed  Google Scholar 

  61. Banerjee S, Sengupta K, Dhar K et al (2006) Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 45:871–880

    CAS  PubMed  Google Scholar 

  62. Hu B, Guo P, Bar-Joseph I et al (2007) Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26:5577–5586

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Matsushita A, Gotze T, Korc M (2007) Hepatocyte growth factor-mediated cell invasion in pancreatic cancer cells is dependent on neuropilin-1. Cancer Res 67:10309–10316

    CAS  PubMed  Google Scholar 

  64. Frankel P, Pellet-Many C, Lehtolainen P et al (2008) Chondroitin sulphate-modified neuropilin 1 is expressed in human tumour cells and modulates 3D invasion in the U87MG human glioblastoma cell line through a p130Cas-mediated pathway. EMBO Rep 9:983–989

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Sulpice E, Plouet J, Berge M et al (2008) Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 111:2036–2045

    CAS  PubMed  Google Scholar 

  67. Pellet-Many C, Frankel P, Evans IM et al (2011) Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J 435:609–618

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Tordjman R, Lepelletier Y, Lemarchandel V et al (2002) A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 3:477–482

    CAS  PubMed  Google Scholar 

  69. Lepelletier Y, Smaniotto S, Hadj-Slimane R et al (2007) Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proc Natl Acad Sci U S A 104:5545–5550

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Kitsukawa T, Shimizu M, Sanbo M et al (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19:995–1005

    CAS  PubMed  Google Scholar 

  71. Kawasaki T, Kitsukawa T, Bekku Y et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  72. Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    CAS  PubMed  Google Scholar 

  73. Gu C, Rodriguez ER, Reimert DV et al (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Fantin A, Herzog B, Mahmoud M et al (2014) Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141:556–562

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Gelfand MV, Hagan N, Tata A et al (2014) Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife 3:e03720

    PubMed Central  PubMed  Google Scholar 

  76. Chen H, Bagri A, Zupicich JA et al (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    PubMed  Google Scholar 

  77. Yuan L, Moyon D, Pardanaud L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    CAS  PubMed  Google Scholar 

  78. Pan Q, Chathery Y, Wu Y et al (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056

    CAS  PubMed  Google Scholar 

  79. Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276:25520–25531

    CAS  PubMed  Google Scholar 

  80. Shraga-Heled N, Kessler O, Prahst C et al (2007) Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. FASEB J 21:915–926

    CAS  PubMed  Google Scholar 

  81. Soker S, Miao HQ, Nomi M et al (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85:357–368

    CAS  PubMed  Google Scholar 

  82. Herzog B, Pellet-Many C, Britton G et al (2011) VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 22:2766–2776

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Prahst C, Heroult M, Lanahan AA et al (2008) Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. J Biol Chem 283:25110–25114

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Evans IM, Yamaji M, Britton G et al (2011) Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells. Mol Cell Biol 31:1174–1185

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Jia H, Bagherzadeh A, Hartzoulakis B et al (2006) Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 281:13493–13502

    CAS  PubMed  Google Scholar 

  86. Pan Q, Chanthery Y, Liang WC et al (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11:53–67

    CAS  PubMed  Google Scholar 

  87. Fantin A, Schwarz Q, Davidson K et al (2011) The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138:4185–4191

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Lanahan A, Zhang X, Fantin A et al (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Murga M, Fernandez-Capetillo O, Tosato G (2005) Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105:1992–1999

    CAS  PubMed  Google Scholar 

  90. Raimondi C, Fantin A, Lampropoulou A et al (2014) Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. J Exp Med 211:1167–1183

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Shimizu M, Murakami Y, Suto F et al (2000) Determination of cell adhesion sites of neuropilin-1. J Cell Biol 148:1283–1293

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Shintani Y, Takashima S, Kato H (2009) Extracellular protein kinase CK2 is a novel associating protein of neuropilin-1. Biochem Biophys Res Commun 385:618–623

    CAS  PubMed  Google Scholar 

  93. Valdembri D, Caswell PT, Anderson KI et al (2009) Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 7:e25

    PubMed  Google Scholar 

  94. Cai H, Reed RR (1999) Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci 19:6519–6527

    CAS  PubMed  Google Scholar 

  95. Wang L, Mukhopadhyay D, Xu X (2006) C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis. FASEB J 20:1513–1515

    CAS  PubMed  Google Scholar 

  96. Abramow-Newerly M, Roy AA, Nunn C et al (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591

    CAS  PubMed  Google Scholar 

  97. Liu M, Horowitz A (2006) A PDZ-binding motif as a critical determinant of Rho guanine exchange factor function and cell phenotype. Mol Biol Cell 17:1880–1887

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Chittenden TW, Claes F, Lanahan AA et al (2006) Selective regulation of arterial branching morphogenesis by synectin. Dev Cell 10:783–795

    CAS  PubMed  Google Scholar 

  99. Naccache SN, Hasson T, Horowitz A (2006) Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Natl Acad Sci U S A 103:12735–12740

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Lanahan AA, Hermans K, Claes F et al (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18:713–724

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Seerapu HR, Borthakur S, Kong N et al (2013) The cytoplasmic domain of neuropilin-1 regulates focal adhesion turnover. FEBS Lett 587:3392–3399

    CAS  PubMed  Google Scholar 

  102. Gagnon ML, Bielenberg DR, Gechtman Z et al (2000) Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Natl Acad Sci U S A 97:2573–2578

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Cackowski FC, Xu L, Hu B (2004) Identification of two novel alternatively spliced Neuropilin-1 isoforms. Genomics 84:82–94

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Yamada Y, Takakura N, Yasue H et al (2001) Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis. Blood 97:1671–1678

    CAS  PubMed  Google Scholar 

  105. Takahashi T, Yamaguchi S, Chida K et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20:2768–2778

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Holmqvist K, Cross MJ, Rolny C et al (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279:22267–22275

    CAS  PubMed  Google Scholar 

  107. Igarashi K, Shigeta K, Isohara T et al (1998) Sck interacts with KDR and Flt-1 via its SH2 domain. Biochem Biophys Res Commun 251:77–82

    CAS  PubMed  Google Scholar 

  108. Warner AJ, Lopez-Dee J, Knight EL et al (2000) The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem J 347:501–509

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Ratcliffe KE, Tao Q, Yavuz B et al (2002) Sck is expressed in endothelial cells and participates in vascular endothelial growth factor-induced signaling. Oncogene 21:6307–6316

    CAS  PubMed  Google Scholar 

  110. Sakurai Y, Ohgimoto K, Kataoka Y et al (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A 102:1076–1081

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Wu LW, Mayo LD, Dunbar JD et al (2000) VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 275(9):6059–6062

    CAS  PubMed  Google Scholar 

  112. Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24:2342–2353

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Meyer RD, Sacks DB, Rahimi N (2008) IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One 3:e3848

    PubMed Central  PubMed  Google Scholar 

  114. Dougher M, Terman BI (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18:1619–1627

    CAS  PubMed  Google Scholar 

  115. Lamalice L, Houle F, Jourdan G et al (2004) Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23:434–445

    CAS  PubMed  Google Scholar 

  116. Lamalice L, Houle F, Huot J (2006) Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem 281:34009–34020

    CAS  PubMed  Google Scholar 

  117. Kroll J, Waltenberger J (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272:32521–32527

    CAS  PubMed  Google Scholar 

  118. Guo D, Jia Q, Song HY et al (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733

    CAS  PubMed  Google Scholar 

  119. Huang L, Sankar S, Lin C et al (1999) HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274:38183–38188

    CAS  PubMed  Google Scholar 

  120. Guo DQ, Wu LW, Dunbar JD et al (2000) Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 275:11216–11221

    CAS  PubMed  Google Scholar 

  121. Bruns AF, Bao L, Walker JH et al (2009) VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 37:1193–1197

    CAS  PubMed  Google Scholar 

  122. Scott A, Mellor H (2009) VEGF receptor trafficking in angiogenesis. Biochem Soc Trans 37:1184–1188

    CAS  PubMed  Google Scholar 

  123. Ewan LC, Jopling HM, Jia H et al (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282

    CAS  PubMed  Google Scholar 

  124. Gampel A, Moss L, Jones MC et al (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631

    CAS  PubMed  Google Scholar 

  125. Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  126. Calera MR, Venkatakrishnan A, Kazlauskas A (2004) VE-cadherin increases the half-life of VEGF receptor 2. Exp Cell Res 300:248–256

    CAS  PubMed  Google Scholar 

  127. Lampugnani MG, Orsenigo F, Gagliani MC et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Holmes DI, Zachary IC (2008) Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2. Cell Signal 20:569–579

    CAS  PubMed  Google Scholar 

  129. Labrecque L, Royal I, Surprenant DS et al (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Ikeda S, Ushio-Fukai M, Zuo L et al (2005) Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 96:467–475

    CAS  PubMed  Google Scholar 

  131. Jopling HM, Odell AF, Hooper NM et al (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29:1119–1124

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Bruns AF, Herbert SP, Odell AF et al (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174

    CAS  PubMed  Google Scholar 

  133. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406

    CAS  PubMed  Google Scholar 

  134. Dayanir V, Meyer RD, Lashkari K et al (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 276:17686–17692

    CAS  PubMed  Google Scholar 

  135. Thakker GD, Hajjar DP, Muller WA et al (1999) The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem 274:10002–10007

    CAS  PubMed  Google Scholar 

  136. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250

    CAS  PubMed  Google Scholar 

  138. Harada H, Grant S (2003) Apoptosis regulators. Rev Clin Exp Hematol 7:117–138

    CAS  PubMed  Google Scholar 

  139. Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    CAS  PubMed  Google Scholar 

  140. Tran J, Rak J, Sheehan C et al (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264:781–788

    CAS  PubMed  Google Scholar 

  141. Dimmeler S, Fleming I, Fisslthaler B et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  PubMed  Google Scholar 

  142. Fulton D, Gratton JP, McCabe TJ et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Wu KK (2002) Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci 962:122–130

    CAS  PubMed  Google Scholar 

  144. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12

    CAS  PubMed  Google Scholar 

  145. Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568–581

    CAS  PubMed  Google Scholar 

  146. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651–4655

    PubMed Central  CAS  PubMed  Google Scholar 

  148. De Caterina R, Libby P, Peng HB et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    PubMed Central  PubMed  Google Scholar 

  149. Zachary I, Mathur A, Yla-Herttuala S et al (2000) Vascular protection: a novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 20:1512–1520

    CAS  PubMed  Google Scholar 

  150. Noiri E, Hu Y, Bahou WF et al (1997) Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 272:1747–1752

    CAS  PubMed  Google Scholar 

  151. Goligorsky MS, Abedi H, Noiri E et al (1999) Nitric oxide modulation of focal adhesions in endothelial cells. Am J Physiol 276:C1271–C1281

    CAS  PubMed  Google Scholar 

  152. Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477:258–262

    CAS  PubMed  Google Scholar 

  153. Fiedler LR, Wojciak-Stothard B (2009) The DDAH/ADMA pathway in the control of endothelial cell migration and angiogenesis. Biochem Soc Trans 37:1243–1247

    CAS  PubMed  Google Scholar 

  154. Fiedler LR, Bachetti T, Leiper J et al (2009) The ADMA/DDAH pathway regulates VEGF-mediated angiogenesis. Arterioscler Thromb Vasc Biol 29:2117–2124

    CAS  PubMed  Google Scholar 

  155. Wojciak-Stothard B, Torondel B, Zhao L et al (2009) Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 20:33–42

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477

    CAS  PubMed  Google Scholar 

  157. Fiedler LR (2009) Rac1 regulates cardiovascular development and postnatal function of endothelium. Cell Adh Migr 3:143–145

    PubMed Central  PubMed  Google Scholar 

  158. Sauzeau V, Rolli-Derkinderen M, Marionneau C et al (2003) RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem 278:9472–9480

    CAS  PubMed  Google Scholar 

  159. Shiga N, Hirano K, Hirano M et al (2005) Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery. Circ Res 96:1014–1021

    CAS  PubMed  Google Scholar 

  160. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    CAS  PubMed  Google Scholar 

  161. Brennan P, Babbage JW, Burgering BM et al (1997) Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7:679–689

    CAS  PubMed  Google Scholar 

  162. Wang D, Sul HS (1998) Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J Biol Chem 273:25420–25426

    CAS  PubMed  Google Scholar 

  163. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    CAS  PubMed  Google Scholar 

  164. Shah OJ, Anthony JC, Kimball SR et al (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279:E715–E729

    CAS  PubMed  Google Scholar 

  165. Rossig L, Badorff C, Holzmann Y et al (2002) Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem 277:9684–9689

    CAS  PubMed  Google Scholar 

  166. Gong C, Stoletov KV, Terman BI (2004) VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis 7:313–321

    CAS  PubMed  Google Scholar 

  167. Meyer RD, Latz C, Rahimi N (2003) Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278:16347–16355

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Rahimi N (2009) A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis. Biochem Soc Trans 37:1189–1192

    CAS  PubMed  Google Scholar 

  169. Kim MJ, Kim E, Ryu SH et al (2000) The mechanism of phospholipase C-gamma1 regulation. Exp Mol Med 32:101–109

    CAS  PubMed  Google Scholar 

  170. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Fleming I, Busse R (1999) Signal transduction of eNOS activation. Cardiovasc Res 43:532–541

    CAS  PubMed  Google Scholar 

  172. Higaki T, Sawada S, Kono Y et al (1999) A role of protein kinase C in the regulation of cytosolic phospholipase A(2) in bradykinin-induced PGI(2) synthesis by human vascular endothelial cells. Microvasc Res 58:144–155

    CAS  PubMed  Google Scholar 

  173. Hirabayashi T, Kume K, Hirose K et al (1999) Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem 274:5163–5169

    CAS  PubMed  Google Scholar 

  174. Evans JH, Spencer DM, Zweifach A et al (2001) Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem 276:30150–30160

    CAS  PubMed  Google Scholar 

  175. Gliki G, Abu-Ghazaleh R, Jezequel S et al (2001) Vascular endothelial growth factor-induced prostacyclin production is mediated by a protein kinase C (PKC)-dependent activation of extracellular signal-regulated protein kinases 1 and 2 involving PKC-delta and by mobilization of intracellular Ca2+. Biochem J 353:503–512

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Wheeler-Jones CP (2008) Regulation of endothelial prostacyclin synthesis by protease-activated receptors: mechanisms and significance. Pharmacol Rep 60:109–118

    CAS  PubMed  Google Scholar 

  177. Hernandez GL, Volpert OV, Iniguez MA et al (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193:607–620

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    CAS  PubMed  Google Scholar 

  179. Reyland ME (2009) Protein kinase C isoforms: multi-functional regulators of cell life and death. Front Biosci 14:2386–2399

    CAS  Google Scholar 

  180. Yamamura S, Nelson PR, Kent KC (1996) Role of protein kinase C in attachment, spreading, and migration of human endothelial cells. J Surg Res 63:349–354

    CAS  PubMed  Google Scholar 

  181. Wang A, Nomura M, Patan S et al (2002) Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ Res 90:609–616

    CAS  PubMed  Google Scholar 

  182. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R et al (1997) Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 420:28–32

    CAS  PubMed  Google Scholar 

  183. Davis RJ (1995) Transcriptional regulation by MAP kinases. Mol Reprod Dev 42:459–467

    CAS  PubMed  Google Scholar 

  184. Pende M, Um SH, Mieulet V et al (2004) S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Evans IM, Zachary IC (2011) Protein kinase D in vascular biology and angiogenesis. IUBMB Life 63:258–263

    CAS  PubMed  Google Scholar 

  186. Evans IM, Britton G, Zachary IC (2008) Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal 20:1375–1384

    CAS  PubMed  Google Scholar 

  187. Qin L, Zeng H, Zhao D (2006) Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cgamma phosphorylation. J Biol Chem 281:32550–32558

    CAS  PubMed  Google Scholar 

  188. Ha CH, Wang W, Jhun BS et al (2008) Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem 283:14590–14599

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Wang S, Li X, Parra M, Verdin E et al (2008) Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A 105:7738–7743

    PubMed Central  PubMed  Google Scholar 

  190. Evans IM, Bagherzadeh A, Charles M et al (2010) Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 429:565–572

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Rousseau S, Houle F, Huot J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10:321–327

    CAS  PubMed  Google Scholar 

  192. Lambert H, Charette SJ, Bernier AF et al (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    CAS  PubMed  Google Scholar 

  193. Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    CAS  PubMed  Google Scholar 

  194. Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Liu D, Evans I, Britton G et al (2008) The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 27:2989–2998

    CAS  PubMed  Google Scholar 

  196. Suehiro J, Hamakubo T, Kodama T et al (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115:2520–2532

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Rousseau S, Houle F, Landry J et al (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    CAS  PubMed  Google Scholar 

  198. Kobayashi M, Nishita M, Mishima T et al (2006) MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 25:713–726

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Rafiee P, Heidemann J, Ogawa H et al (2004) Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling. Cell Commun Signal 2:3

    PubMed Central  PubMed  Google Scholar 

  200. McMullen ME, Bryant PW, Glembotski CC et al (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 280:20995–21003

    CAS  PubMed  Google Scholar 

  201. Cote MC, Lavoie JR, Houle F et al (2010) Regulation of vascular endothelial growth factor-induced endothelial cell migration by LIM kinase 1-mediated phosphorylation of annexin 1. J Biol Chem 285:8013–8021

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Mudgett JS, Ding J, Guh-Siesel L et al (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 97:10454–10459

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Adams RH, Porras A, Alonso G et al (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116

    CAS  PubMed  Google Scholar 

  204. Beardmore VA, Hinton HJ, Eftychi C et al (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25:10454–10464

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    CAS  PubMed  Google Scholar 

  206. Roberts OL, Holmes K, Muller J et al (2009) ERK5 and the regulation of endothelial cell function. Biochem Soc Trans 37:1254–1259

    CAS  PubMed  Google Scholar 

  207. Regan CP, Li W, Boucher DM et al (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A 99:9248–9253

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Sohn SJ, Sarvis BK, Cado D et al (2002) ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem 277:43344–43351

    CAS  PubMed  Google Scholar 

  209. Yan L, Carr J, Ashby PR et al (2003) Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol 3:11

    PubMed Central  PubMed  Google Scholar 

  210. Hayashi M, Kim SW, Imanaka-Yoshida K et al (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Kato Y, Kravchenko VV, Tapping RI et al (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 16:7054–7066

    PubMed Central  CAS  PubMed  Google Scholar 

  212. English JM, Pearson G, Baer R et al (1998) Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem 273:3854–3860

    CAS  PubMed  Google Scholar 

  213. Yang CC, Ornatsky OI, McDermott JC et al (1998) Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 26:4771–4777

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Kamakura S, Moriguchi T, Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274:26563–26571

    CAS  PubMed  Google Scholar 

  215. Kato Y, Chao TH, Hayashi M et al (2000) Role of BMK1 in regulation of growth factor-induced cellular responses. Immunol Res 21:233–237

    CAS  PubMed  Google Scholar 

  216. Watson FL, Heerssen HM, Bhattacharyya A et al (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4:981–988

    CAS  PubMed  Google Scholar 

  217. Lin Q, Schwarz J, Bucana C et al (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Lin Q, Lu J, Yanagisawa H et al (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    CAS  PubMed  Google Scholar 

  219. Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267

    CAS  PubMed  Google Scholar 

  220. Pi X, Yan C, Berk BC (2004) Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ Res 94:362–369

    CAS  PubMed  Google Scholar 

  221. Edwards DC, Sanders LC, Bokoch GM et al (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259

    CAS  PubMed  Google Scholar 

  222. Stoletov KV, Gong C, Terman BI (2004) Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp Cell Res 295:258–268

    CAS  PubMed  Google Scholar 

  223. Duval M, Le Boeuf F, Huot J et al (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:4659–4668

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185

    PubMed  Google Scholar 

  225. Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416

    CAS  PubMed  Google Scholar 

  226. Alavi A, Hood JD, Frausto R et al (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96

    CAS  PubMed  Google Scholar 

  227. Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    CAS  PubMed  Google Scholar 

  228. Soldi R, Mitola S, Strasly M et al (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892

    PubMed Central  CAS  PubMed  Google Scholar 

  229. Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272:15442–15451

    CAS  PubMed  Google Scholar 

  230. Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    CAS  PubMed  Google Scholar 

  231. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    CAS  PubMed  Google Scholar 

  232. Le Boeuf F, Houle F, Sussman M et al (2006) Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol Biol Cell 17:3508–3520

    PubMed Central  PubMed  Google Scholar 

  233. Avraham HK, Lee TH, Koh Y et al (2003) Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278:36661–36668

    CAS  PubMed  Google Scholar 

  234. Hodivala-Dilke KM, McHugh KP, Tsakiris DA et al (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Reynolds LE, Wyder L, Lively JC et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34

    CAS  PubMed  Google Scholar 

  236. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105

    CAS  PubMed  Google Scholar 

  237. Senger DR, Claffey KP, Benes JE et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 94:13612–13617

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524

    CAS  PubMed  Google Scholar 

  239. Hrabe de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721

    CAS  PubMed  Google Scholar 

  240. Domenga V, Fardoux P, Lacombe P et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735

    PubMed Central  CAS  PubMed  Google Scholar 

  241. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  242. Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    CAS  PubMed  Google Scholar 

  243. Williams CK, Li JL, Murga M et al (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107:931–939

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Harrington LS, Sainson RC, Williams CK et al (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75:144–154

    CAS  PubMed  Google Scholar 

  245. Funahashi Y, Shawber CJ, Vorontchikhina M et al (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2:3

    PubMed Central  PubMed  Google Scholar 

  246. Benedito R, Roca C, Sorensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    CAS  PubMed  Google Scholar 

  247. Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    CAS  PubMed  Google Scholar 

  248. Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  249. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784

    CAS  PubMed  Google Scholar 

  250. Ren B, Deng Y, Mukhopadhyay A et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120:1217–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    CAS  PubMed  Google Scholar 

  252. Yang S, Toy K, Ingle G et al (2002) Vascular endothelial growth factor-induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt-1 receptors. Arterioscler Thromb Vasc Biol 22:1797–1803

    CAS  PubMed  Google Scholar 

  253. Liu D, Jia H, Holmes DI et al (2003) Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol 23:2002–2007

    CAS  PubMed  Google Scholar 

  254. Kahn J, Mehraban F, Ingle G et al (2000) Gene expression profiling in an in vitro model of angiogenesis. Am J Pathol 156:1887–1900

    PubMed Central  CAS  PubMed  Google Scholar 

  255. Glienke J, Schmitt AO, Pilarsky C et al (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267:2820–2830

    CAS  PubMed  Google Scholar 

  256. Bell SE, Mavila A, Salazar R et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773

    CAS  PubMed  Google Scholar 

  257. Sheikh-Hamad D (2010) Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 298:F248–F254

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Chakraborty A, Brooks H, Zhang P et al (2007) Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. Am J Physiol Renal Physiol 292:F895–F904

    CAS  PubMed  Google Scholar 

  259. Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Gerber HP, Malik AK, Solar GP et al (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–958

    CAS  PubMed  Google Scholar 

  261. Brusselmans K, Bono F, Collen D et al (2005) A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280:3493–3499

    CAS  PubMed  Google Scholar 

  262. Lee TH, Seng S, Sekine M et al (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4:e186

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by BHF Programme Grant RG/06/003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evans, I. (2015). An Overview of VEGF-Mediated Signal Transduction. In: Fiedler, L. (eds) VEGF Signaling. Methods in Molecular Biology, vol 1332. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2917-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2917-7_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2916-0

  • Online ISBN: 978-1-4939-2917-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics