Skip to main content

Approaches to Characterize and Quantify Oligomerization of GPCRs

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

Fluorescence resonance energy transfer (FRET) is an approach widely used to detect protein–protein interactions in live cells. This approach is based on the sensitization of an “acceptor” molecule by the energy transfer from a “donor” when there is an overlap between the emission spectrum of the “donor” and the excitation spectrum of the “acceptor” and close proximity between the two fluorophore species (in the region of 8 nm). Various methods exist to quantify FRET signals: here, we describe the application of homogeneous time-resolved FRET (htrFRET) combined with Tag-lite™ technology and its application to determine not only protein–protein interactions but also the capability of GPCR mutant variants to form homomers compared to the wild type GPCR within the plasma membrane of transfected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schöneberg T, Schulz A, Biebermann H et al (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    Article  PubMed  Google Scholar 

  2. Bayburt TH, Leitz AJ, Xie G et al (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  CAS  PubMed  Google Scholar 

  3. Whorton MR, Bokoch MP, Rasmussen SG et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Whorton MR, Jastrzebska B, Park PS et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kuszak AJ, Pitchiaya S, Anand JP et al (2009) Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 284:26732–26741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Milligan G (2013) The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 84:158–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ferré S, Casadó V, Devi LA et al (2014) G protein-coupled recpetor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  9. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  10. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Huang J, Chen S, Zhang JJ et al (2013) Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaczor AA, Selent J (2011) Oligomerization of G protein-coupled receptors: biochemical and biophysical methods. Curr Med Chem 18:4606–4634

    Article  CAS  PubMed  Google Scholar 

  13. Maurel D, Comps-Agrar L, Brock C et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Alvarez-Curto E, Ward RJ, Pediani JD et al (2010) Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem 285:23318–23330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ward RJ, Pediani JD, Milligan G (2011) Heteromultimerization of cannabinoid CB1 receptor and orexin OX1 receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem 286:37414–37428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. van Rijn RM, van Marle A, Chazot PL et al (2008) Cloning and characterisation of dominant negative splice variants of the human histamine H4 receptor. Biochem J 414:121–131

    Article  PubMed  Google Scholar 

  17. Ballesteros JA, Weinstein H (1995) Integrated methods for modelling G-protein coupled receptors. Methods Neurosci 25:366–428

    Google Scholar 

  18. Liste MJ, Caltabiano G, Ward RJ et al (2015) The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol Pharmacol 87:936–953

    Google Scholar 

  19. Marsango S, Caltabiano G, Pou C et al (2015) Analysis of Human Dopamine D3 Receptor Quaternary Structure. J Biol Chem 290:15146–15162

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Medical Research Council (UK) grants [MR/L023806/1 and G0900050] to GM. SM thanks the Istituto Pasteur, Fondazione Cenci-Bolognetti for support. MJVL thanks the Fundación Pedro Barrié de la Maza for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marsango, S., Varela, M.J., Milligan, G. (2015). Approaches to Characterize and Quantify Oligomerization of GPCRs. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics