Skip to main content

The Dynamic Process of Drug–GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics

  • Protocol
Book cover G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

Major advances in G Protein-Coupled Receptor (GPCR) structural biology over the past few years have yielded a significant number of high-resolution crystal structures for several different receptor subtypes. This dramatic increase in GPCR structural information has underscored the use of automated docking algorithms for the discovery of novel ligands that can eventually be developed into improved therapeutics. However, these algorithms are often unable to discriminate between different, yet energetically similar, poses because of their relatively simple scoring functions. Here, we describe a metadynamics-based approach to study the dynamic process of ligand binding to/unbinding from GPCRs with a higher level of accuracy and yet satisfying efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol 654:141–168. doi:10.1007/978-1-60761-762-4_8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2013) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12(1):25–34. doi:10.1038/nrd3859, nrd3859 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106. doi:10.1038/nature12735, nature12735 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. doi:10.1038/nature10361, nature10361 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2014) From three-dimensional GPCR structure to rational ligand discovery. Adv Exp Med Biol 796:129–157. doi:10.1007/978-94-007-7423-0_7

    Article  CAS  PubMed  Google Scholar 

  7. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184. doi:10.1016/j.sbi.2008.01.004, S0959-440X(08)00008-0 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51(12):3499–3506. doi:10.1021/jm800071v

    Article  CAS  PubMed  Google Scholar 

  9. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, 11–17 November 2006

    Google Scholar 

  10. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  11. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fitch BG, Germain RS, Mendell M, Pitera J, Pitman M, Rayshubskiy A, Sham Y, Suits F, Swope W, Ward TJC, Zhestkov Y, Zhou R (2003) Blue matter, an application framework for molecular simulation on Blue Gene. J Parallel Distrib Comput 63:759–773. doi:10.1016/s0743-7315(03)00084-4

    Article  Google Scholar 

  13. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan YB, Spengler J, Theobald M, Towles B, Wang SC (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97. doi:10.1145/1364782.1364802

    Article  Google Scholar 

  14. Allen F, Almasi G, Andreoni W, Beece D, Berne BJ, Bright A, Brunheroto J, Cascaval C, Castanos J, Coteus P, Crumley P, Curioni A, Denneau M, Donath W, Eleftheriou M, Fitch B, Fleischer B, Georgiou CJ, Germain R, Giampapa M, Gresh D, Gupta M, Haring R, Ho H, Hochschild P, Hummel S, Jonas T, Lieber D, Martyna G, Maturu K, Moreira J, Newns D, Newton M, Philhower R, Picunko T, Pitera J, Pitman M, Rand R, Royyuru A, Salapura V, Sanomiya A, Shah R, Sham Y, Singh S, Snir M, Suits F, Swetz R, Swope WC, Vishnumurthy N, Ward TJC, Warren H, Zhou R, Team IBMBG (2001) Blue gene: a vision for protein science using a petaflop supercomputer. IBM Syst J 40(2):310–327

    Article  Google Scholar 

  15. Almasi G, Asaad S, Bellofatto RE, Bickford HR, Blumrich MA, Brezzo B, Bright AA, Brunheroto JR, Castanos JG, Chen D, Chiu GLT, Coteus PW, Dombrowa MB, Dozsa G, Eichenberger AE, Gara A, Giampapa ME, Giordano FP, Gunnels JA, Hall SA, Haring RA, Heidelberger P, Hoenicke D, Kochte M, Kopcsay GV, Kumar S, Lanzetta AP, Lieber D, Nathanson BJ, O’Brien K, Ohmacht AS, Ohmacht M, Rand RA, Salapura V, Sexton JC, Stemmacher-Burow BD, Stunkel C, Sugavanam K, Swetz RA, Takken T, Tian SR, Trager BM, Tremaine RB, Vranas P, Walkup RE, Wazlowski ME, Winograd S, Wisniewski RW, Wu P, Busche DR, Douskey SM, Ellavsky MR, Flynn WT, Germann PR, Hamilton MJ, Hehenberger L, Hruby BJ, Jeanson MJ, Kasemkhani F, Lembach RF, Liebsch TA, Lyndgaard KC, Lytle RW, Marcella JA, Marroquin CM, Mathiowetz CH, Maurice MD, Nelson E, Rickert DM, Sellers GW, Sheets JE, Strissel SA, Wait CD, Winter BB, Wood CJ, Zumbrunnen LM, Rangarajan M, Allen PV, Archer CJ, Blocksome M, Budnik TA, Ellis SD, Good MP, Gooding TM, Inglett TA, Kaliszewski KT, Knudson BL, Lappi C, Leckband GS, Lee S, Megerian MG, Miller SJ, Mundy MB, Musselman RG, Musta TE, Nelson MT, Obert CF, Van Oosten JL, Orbeck JP, Parker JJ et al (2008) Overview of the IBM Blue Gene/P project. IBM J Res Develop 52(1–2):199–220

    Google Scholar 

  16. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123. doi:10.1073/pnas.1104614108, 1104614108 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556. doi:10.1038/nature10867, nature10867 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503(7475):295–299. doi:10.1038/nature12595, nature12595 [pii]

    CAS  PubMed  Google Scholar 

  19. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Limongelli V, Bonomi M, Marinelli L, Gervasio FL, Cavalli A, Novellino E, Parrinello M (2010) Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci U S A 107(12):5411–5416. doi:10.1073/pnas.0913377107, 0913377107 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Limongelli V, Marinelli L, Cosconati S, La Motta C, Sartini S, Mugnaini L, Da Settimo F, Novellino E, Parrinello M (2012) Sampling protein motion and solvent effect during ligand binding. Proc Natl Acad Sci U S A 109(5):1467–1472. doi:10.1073/pnas.1112181108, 1112181108 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Grazioso G, Limongelli V, Branduardi D, Novellino E, De Micheli C, Cavalli A, Parrinello M (2012) Investigating the mechanism of substrate uptake and release in the glutamate transporter homologue Glt(Ph) through metadynamics simulations. J Am Chem Soc 134(1):453–463. doi:10.1021/ja208485w

    Article  CAS  PubMed  Google Scholar 

  23. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127(8):2600–2607. doi:10.1021/ja0445950

    Article  CAS  PubMed  Google Scholar 

  24. Provasi D, Bortolato A, Filizola M (2009) Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics. Biochemistry 48(42):10020–10029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci U S A 101(1):117–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Roux B (1999) Statistical mechanical equilibrium theory of selective ion channels. Biophys J 77(1):139–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55(3):656–677. doi:10.1002/Prot10629

    Article  CAS  PubMed  Google Scholar 

  28. Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461, Macromolecular Crystallography, Pt D

    Article  CAS  PubMed  Google Scholar 

  29. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154. doi:10.1021/ci300363c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168. doi:10.1021/ci3003649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. http://cgenff.paramchem.org/

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Wallingford, CT

    Google Scholar 

  33. Schrodinger L, New York, NY (2009) Jaguar. version 7.6

    Google Scholar 

  34. Kumar R, Iyer VG, Im W (2007) CHARMM-GUI: a graphical user interface for the CHARMM users. Abstracts Papers Am Chem Soc 233:273

    Google Scholar 

  35. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi YF, Lee JM, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI Membrane Builder Toward Realistic Biological Membrane Simulations. J Comput Chem 35(27):1997–2004. doi:10.1002/Jcc.23702

    Article  CAS  PubMed  Google Scholar 

  36. http://www.charmm-gui.org/

    Google Scholar 

  37. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4):475–488. doi:10.1016/j.ymeth.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt TH, Kandt C (2012) LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inform Model 10:2657–2669

    Article  Google Scholar 

  39. Hess B, Kutzner, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  40. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10):1961–1972

    Article  CAS  Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  42. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

    Google Scholar 

  43. http://zhanglab.ccmb.med.umich.edu/GPCR-EXP/

    Google Scholar 

  44. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6(8):551–552. doi:10.1038/nmeth0809-551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/Jcc.21256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inform Model 50(9):1561–1573. doi:10.1021/Ci100214a

    Article  CAS  Google Scholar 

  48. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  49. Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21(2):86–104. doi:10.1002/(Sici)1096-987x(20000130)21:2<86::Aid-Jcc2>3.0.Co;2-G

    Article  CAS  Google Scholar 

  50. http://mackerell.umaryland.edu/charmm_ff.shtml

    Google Scholar 

  51. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):Artn014101. doi:10.1063/1.2408420

    Article  Google Scholar 

  52. Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals: a new molecular-dynamics method. J Appl Phys 52(12):7182–7190. doi:10.1063/1.328693

    Article  CAS  Google Scholar 

  53. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdisciplinary Reviews. Comput Mol Sci 1(5):826–843. doi:10.1002/Wcms.31

    Article  CAS  Google Scholar 

  54. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110(8):3533–3539. doi:10.1021/Jp054359r

    Article  CAS  PubMed  Google Scholar 

  55. Sutto L, D’Abramo M, Gervasio FL (2010) Comparing the efficiency of biased and unbiased molecular dynamics in reconstructing the free energy landscape of met-enkephalin. J Chem Theor Comput 6:3640–3646

    Article  CAS  Google Scholar 

  56. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs: a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1-3):43–56. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  57. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/Jcc.20290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1-3):1–41. doi:10.1016/0010-4655(95)00041-D

    Article  CAS  Google Scholar 

  59. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613. doi:10.1016/j.cpc.2013.09.018

    Article  CAS  Google Scholar 

  60. Costanzi S, Wang KY (2014) The GPCR crystallography boom: providing an invaluable source of structural information and expanding the scope of homology modeling. G Protein-Coupled Receptors. Model Simulat 796:3–13. doi:10.1007/978-94-007-7423-0_1

    CAS  Google Scholar 

  61. Sandal M, Duy TP, Cona M, Zung H, Carloni P, Musiani F, Giorgetti A (2013) GOMoDo: a GPCRs online modeling and docking webserver. Plos One 8(9), e74092. doi:10.1371/journal.pone.0074092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Yoshikawa Y, Oishi S, Kubo T, Tanahara N, Fujii N, Furuya T (2013) Optimized method of G-protein-coupled receptor homology modeling: its application to the discovery of Novel CXCR7 ligands. J Med Chem 56(11):4236–4251. doi:10.1021/Jm400307y

    Article  CAS  PubMed  Google Scholar 

  63. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi:10.1002/jcc.21367

    CAS  PubMed Central  PubMed  Google Scholar 

  64. http://www.msg.ameslab.gov/gamess/capabilities.html

    Google Scholar 

  65. http://www.abinit.org

    Google Scholar 

  66. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109(14):6714–6721. doi:10.1021/jp045424k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by National Institutes of Health grants DA026434 and DA034049. Computations in the Filizola lab are performed on the Extreme Science and Engineering Discovery Environment (XSEDE) under MCB080109N, which is supported by National Science Foundation grant number OCI-1053575, and on the computational resources provided by the Scientific Computing Facility at the Icahn School of Medicine at Mount Sinai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Filizola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schneider, S., Provasi, D., Filizola, M. (2015). The Dynamic Process of Drug–GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics