Skip to main content

Detection and Quantification of Intracellular Signaling Using FRET-Based Biosensors and High Content Imaging

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

Förster resonance energy transfer (FRET) biosensors represent invaluable tools to detect the spatiotemporal context of second messenger production and intracellular signaling that cannot be attained using traditional methods. Here, we describe a detailed protocol for the use of high content imaging in combination with FRET biosensors to assess second messenger production and intracellular signaling in a time-effective manner. We use four different FRET biosensors to measure cAMP levels, kinase (ERK and PKC), and GTPase activity. Importantly, we provide the protocols to express and measure these sensors in a variety of model cell lines and primary dorsal root ganglia neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327:472–500

    Article  CAS  PubMed  Google Scholar 

  2. Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98:15003–15008. doi:10.1073/pnas.211564598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918. doi:10.1038/nrm976

    Article  CAS  PubMed  Google Scholar 

  4. Sato M, Ozawa T, Inukai K et al (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294. doi:10.1038/nbt0302-287

    Article  CAS  PubMed  Google Scholar 

  5. Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909. doi:10.1083/jcb.200302125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269. doi:10.1073/pnas.0804598105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nikolaev V, Bunemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218, doi: 10.1074/jbc.C400302200 C400302200 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  9. Zeitelhofer M, Vessey JP, Xie Y et al (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nat Protocol 2:1692–1704. doi:10.1038/nprot.2007.226

    Article  CAS  Google Scholar 

  10. Willoughby D, Masada N, Wachten S et al (2010) AKAP79/150 interacts with AC8 and regulates Ca2 + -dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem 285:20328–20342. doi:10.1074/jbc.M110.120725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Willoughby D, Schwiening CJ (2002) Electrically evoked dendritic pH transients in rat cerebellar Purkinje cells. J Physiol 544:487–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wachten S, Masada N, Ayling L-J et al (2010) Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells. J Cell Sci 123:95–106. doi:10.1242/jcs.058594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Halls ML, Cooper DM. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex. EMBO J 29:2772–2787. doi:10.1038/emboj.2010.168

    Google Scholar 

  14. Jensen DD, Halls ML, Murphy JE et al (2014) Endothelin-converting enzyme-1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J Biol Chem. doi:10.1074/jbc.M114.578179

    Google Scholar 

  15. Itoh RE, Kurokawa K, Ohba Y et al (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22:6582–6591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656. doi:10.1091/mbc.E11-01-0072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A 79:4888–4891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Monash Fellowship to M. Canals, NHMRC RD Wright Career Development Fellowship to M.L. Halls (1061687), NHMRC Project Grants (1047633, 1047730, 1062230) to M. Canals, M.L. Halls and A.M. Ellisdon, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences Large Grant Support Scheme grants to M. Canals and M.L. Halls, ARC Centre of Excellence in Advanced Molecular Imaging and Faculty of Medicine Nursing and Health Sciences Early Career Development Strategic Grant to A.M. Ellisdon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelle L. Halls or Meritxell Canals .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Materials S1

FRET Analysis—Batch Analyse (ijm 9 KB))

Supplemental Materials S2

FRET Analysis—Cell Markup (ijm 3 KB)

Supplemental Materials S3

Stack Creator (ijm 20 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Halls, M.L., Poole, D.P., Ellisdon, A.M., Nowell, C.J., Canals, M. (2015). Detection and Quantification of Intracellular Signaling Using FRET-Based Biosensors and High Content Imaging. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics