Skip to main content

Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

RNA-guided Cas9 nucleases derived from clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems have recently been adapted as sequence-programmable tools for various purposes such as genome editing and transcriptional regulation. A critical aspect of the system is the selection and validation of spacer sequences that allow precise targeting of the guide RNA-Cas9 complex. We describe a procedure involving computational and experimental steps to identify and test potentially interesting spacer sequences in bacterial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. doi:10.1038/msb.2012.66

    Article  PubMed Central  PubMed  Google Scholar 

  2. Marraffini L, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190. doi:10.1038/nrg2749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170. doi:10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  4. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. doi:10.1038/nbt.2508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. doi:10.1038/nmeth.2649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. doi:10.1038/nbt.2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) PNAS Plus: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586. doi:10.1073/pnas.1208507109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    Article  CAS  PubMed  Google Scholar 

  10. Esvelt KM, Mali P, Braff JL et al (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121. doi:10.1038/nmeth.2681

    Article  CAS  PubMed  Google Scholar 

  11. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573. doi:10.1038/nature13579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. doi:10.1016/j.cell.2014.02.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mali P, Aach J, Stranges PB et al (2013) Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838. doi:10.1038/nbt.2675

    Article  CAS  PubMed  Google Scholar 

  14. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi:10.1126/science.1231143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Qi LS, Larson MH, Gilbert L et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bikard D, Jiang W, Samai P et al (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437. doi:10.1093/nar/gkt520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tanenbaum ME, Gilbert L, Qi LS et al (2014) A versatile protein tagging system for signal amplification in single molecule imaging and gene regulation. Cell 159:635–646. doi:10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  18. Grenier F, Matteau D, Baby V, Rodrigue S (2014) Complete genome sequence of Escherichia coli BW25113. Genome Announc 2:e01038. doi:10.1128/genomeA.01038-14

    Article  PubMed Central  PubMed  Google Scholar 

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. doi:10.1073/pnas.120163297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115. doi:10.1016/j.gene.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  21. Schleif R (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34:779–796. doi:10.1111/j.1574-6976.2010.00226.x

    Article  CAS  PubMed  Google Scholar 

  22. Mathews DH, Sabina J, Zuker M et al (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Donald L. Court (NCI-Frederick) for the generous gift of pSIM7 and to Dominick Matteau and Alain Lavigueur for critical reading of the manuscript. We thank the Centre de calcul scientifique of Université de Sherbrooke for computational resources and technical support. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). S.R. holds a Chercheur-boursier Junior 1 award from the Fonds de recherche Québec-Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rodrigue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grenier, F., Lucier, JF., Rodrigue, S. (2015). Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics