Skip to main content

Characterization of Carbohydrate Vaccines by NMR Spectroscopy

  • Protocol
Carbohydrate-Based Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1331))

Abstract

Physicochemical techniques are a powerful tool for the structural characterization of carbohydrate-based vaccines. High-field Nuclear Magnetic Resonance (NMR) spectroscopy has been established as an extremely useful and robust method for tracking the industrial manufacturing process of these vaccines from polysaccharide bulk antigen through to the final formulation. Here, we describe the use of proton NMR for structural identity and conformity testing of carbohydrate-based vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones C (2005) NMR assays for carbohydrate-based vaccines. J Pharm Biomed Anal 38:840–850

    Article  CAS  PubMed  Google Scholar 

  2. Jones C, Ravenscroft N (2008) NMR assays for carbohydrate-based vaccines. In: Holtzgrabe U, Wawer I, Diehl B (eds) NMR spectroscopy in pharmaceutical analysis. Elsevier, Oxford, UK, pp 341–368

    Chapter  Google Scholar 

  3. Lemercinier X, Jones C (1996) Full 1H NMR assignment and detailed O-acetylation patterns of capsular polysaccharides from Neisseria meningitidis used in vaccine production. Carbohydr Res 296:83–96

    Article  CAS  PubMed  Google Scholar 

  4. Lemercinier X, Jones C (2000) An NMR spectroscopic identity test for the control of the capsular polysaccharide from Haemophilus influenzae type b. Biologicals 28:175–183

    Article  CAS  PubMed  Google Scholar 

  5. Lemercinier X, Martinez-Cabrera I, Jones C (2000) Use and validation of an NMR test for the identity and O-acetyl content of the Salmonella typhi Vi capsular polysaccharide vaccine. Biologicals 28:17–24

    Article  CAS  PubMed  Google Scholar 

  6. Abeygunawardana C, Williams TC, Sumner JS et al (2000) Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal Biochem 279:226–240

    Article  CAS  PubMed  Google Scholar 

  7. Jones C, Lemercinier X (2002) Use and validation of NMR assays for the identity and O-acetyl content of capsular polysaccharides from Neisseria meningitidis used in vaccine manufacture. J Pharm Biomed Anal 30:1233–1247

    Article  CAS  PubMed  Google Scholar 

  8. Ravenscroft N, D’Ascenzi S, Proietti D et al (2000) Physicochemical characterisation of the oligosaccharide component of vaccines. Dev Biol (Basel) 103:35–47

    CAS  Google Scholar 

  9. Ravenscroft N, Averani G, Bartoloni A et al (1999) Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines. Vaccine 17:2802–2816

    Article  CAS  PubMed  Google Scholar 

  10. Jones C, Lemercinier X, Crane DT et al (2000) Spectroscopic studies of the structure and stability of glycoconjugate vaccines. Dev Biol (Basel) 103:121–136

    CAS  Google Scholar 

  11. Bardotti A, Averani G, Berti F et al (2005) Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines against Neisseria meningitidis groups Y and W135. Vaccine 23:1887–1899

    Article  CAS  PubMed  Google Scholar 

  12. Bardotti A, Averani G, Berti F et al (2008) Physicochemical characterization of glycoconjugate vaccines for prevention of meningococcal diseases. Vaccine 26:2284–2296

    Article  CAS  PubMed  Google Scholar 

  13. Ravenscroft N (2000) The application of NMR spectroscopy to track the industrial preparation of polysaccharide and derived glycoconjugate vaccines. Pharmeuropa, Special Edition, pp 131–144

    Google Scholar 

  14. Xu Q, Abeygunawardana C, Ng AS et al (2005) Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations. Anal Biochem 336:262–272

    Article  CAS  PubMed  Google Scholar 

  15. Holzgrabe U, Deubner R, Schollmayer C et al (2005) Quantitative NMR spectroscopy—applications in drug analysis. J Pharm Biomed Anal 38:806–812

    Article  CAS  PubMed  Google Scholar 

  16. Holliday MR, Jones C (1999) Meeting report: WHO-Co-sponsored informal Workshop on the use of physicochemical methods for the characterization of Haemophilus influenzae type b conjugate vaccines. Biologicals 27:51–53

    Article  CAS  PubMed  Google Scholar 

  17. Pinto V, Berti F (2014) Exploring the Group B Streptococcus capsular polysaccharides: the structural diversity provides the basis for development of NMR-based identity assays. J Pharm Biomed Anal 98:9–15

    Article  CAS  PubMed  Google Scholar 

  18. Egan W, Schneerson R, Werner KE et al (1982) Structural studies and chemistry of bacterial capsular polysaccharides. Investigations of phosphodiester-linked capsular polysaccharides isolated from Haemophilus influenzae types a, b, c, and f: NMR spectroscopic identification and chemical modification of endgroups and the nature of base-catalyzed hydrolytic depolymerization. J Am Chem Soc 104:2898–2910

    Article  CAS  Google Scholar 

  19. Sturgess AW, Rush K, Charbonneau RJ et al (1999) Haemophilus influenzae type b conjugate vaccine stability: catalytic depolymerization of PRP in the presence of aluminium hydroxide. Vaccine 17:1169–1178

    Article  CAS  PubMed  Google Scholar 

  20. Lindberg AA (1999) Glycoprotein conjugate vaccines. Vaccine 17(Suppl 2):S28–S36

    Article  CAS  PubMed  Google Scholar 

  21. Verez-Bencomo V, Fernández-Santana V, Hardy E et al (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305:522–525

    Article  CAS  PubMed  Google Scholar 

  22. Aubin Y, Jones C, Freedberg DI (2010) Using NMR Spectroscopy to obtain the higher order structure of biopharmaceutical products. BioPharm Int (Suppl):28–38

    Google Scholar 

  23. D’Ambra AJ, Baugher JE, Concannon PE et al (1997) Direct and indirect methods for molar-mass analysis of fragments of the capsular polysaccharides of Haemophilus influenzae type b. Anal Biochem 250:228–236

    Article  PubMed  Google Scholar 

  24. Xu Q, Klees J, Teyral J et al (2005) Quantitative nuclear magnetic resonance analysis and characterization of the derivatized Haemophilus influenzae type b polysaccharide intermediate for PedvaxHIB. Anal Biochem 337:235–245

    Article  CAS  PubMed  Google Scholar 

  25. Anonymous (2013) Recommendations to assure the quality, safety and efficacy of typhoid conjugate vaccines. World Health Organization. http://www.who.int/biologicals/areas/vaccines/TYPHOID_BS2215_doc_v1.14_WEB_VERSION.pdf. Accessed 27 June 2014

    Google Scholar 

  26. Cohn AC, MacNeil JR, Clark TA et al (2013) Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 62(RR-2):1–28

    PubMed  Google Scholar 

  27. Micoli F, Romano MR, Tontini M et al (2013) Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc Natl Acad Sci U S A 110:19077–19082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xie O, Bolgiano B, Gao F et al (2012) Characterization of size, structure and purity of serogroup X Neisseria meningitidis polysaccharide, and development of an assay for quantification of human antibodies. Vaccine 30:5812–5823

    Article  CAS  PubMed  Google Scholar 

  29. Garrido R, Puyada A, Fernández A et al (2012) Quantitative proton nuclear magnetic resonance evaluation and total assignment of the capsular polysaccharide Neisseria meningitides serogroup X. J Pharm Biomed Anal 70:295–300

    Article  CAS  PubMed  Google Scholar 

  30. Berti F, Romano MR, Micoli F et al (2012) Relative stability of meningococcal serogroup A and X polysaccharides. Vaccine 30:6409–6415

    Article  CAS  PubMed  Google Scholar 

  31. Ginsburg AS, Alderson MR (2011) New conjugate vaccines for the prevention of pneumococcal disease in developing countries. Drugs Today 47:207–214

    Article  CAS  PubMed  Google Scholar 

  32. Jones C, Mulloy B (1993) The application of nuclear magnetic resonance to structural studies of polysaccharides. In: Jones C, Mulloy B, Thomas AH (eds) Spectroscopic methods and analyses. Humana, Totowa, NJ, pp 149–167

    Chapter  Google Scholar 

  33. Anonymous (2005) Recommendations for the production and control of pneumococcal conjugate vaccines. WHO Tech Rep Series 927: 64–98

    Google Scholar 

  34. Madhi SA, Dangor Z, Heath PT et al (2013) Considerations for a phase-III trial to evaluate a group B Streptococcus polysaccharide-protein conjugate vaccine in pregnant women for the prevention of early-and late-onset invasive disease in young-infants. Vaccine 31:D52–D57

    Article  CAS  PubMed  Google Scholar 

  35. Bubb WA (2003) NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concept Magn Reson A 19:1–19

    Article  Google Scholar 

  36. Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614

    Article  CAS  PubMed  Google Scholar 

  37. Lundborg M, Widmalm G (2011) Structure analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chris Jones (Laboratory for Molecular Structure, National Institute for Biological Standards and Control) for years of useful discussions on NMR and vaccines. One of us (N.R.) would like to thank PATH and all the vaccine manufacturers who have made available samples of polysaccharides and glycoconjugate vaccines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Berti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Berti, F., Ravenscroft, N. (2015). Characterization of Carbohydrate Vaccines by NMR Spectroscopy. In: Lepenies, B. (eds) Carbohydrate-Based Vaccines. Methods in Molecular Biology, vol 1331. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2874-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2874-3_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2873-6

  • Online ISBN: 978-1-4939-2874-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics