Skip to main content

Imaging of Muscarinic Receptors in the Central Nervous System

  • Protocol
Muscarinic Receptor: From Structure to Animal Models

Part of the book series: Neuromethods ((NM,volume 107))

  • 752 Accesses

Abstract

For the quantitative imaging of muscarinic acetylcholine receptors (mAChR), we developed novel PET probes, (+)N-11C-methyl-3-piperidyl benzilate (11C-(+)3-MPB), and its N-alkyl substitute analogs, and evaluated them in the brains of conscious monkeys (Macaca mulatta) using high-resolution positron emission tomography (PET). Although (+)3-MPB had relatively poor selectivity to the subtypes of mAChR, the regional cortical distribution of 11C-(+)3-MPB was found to be consistent with mAChR density in the living monkey brain as reported in vitro. In contrast, its enantiomeric analog 11C-(−)3-MPB provided homogeneous distribution with no significant specific binding throughout the whole brain. The N-alkyl substitution of alkyl moiety from methyl (11C-(+)3-MPB) to ethyl (11C-(+)3-EPB) and propyl (11C-(+)3-PPB) resulted in lower affinities to mAChR in vitro, the faster kinetics in the living brain, and greater sensitivity to increased endogenous ACh level, induced by acetylcholinesterase (AChE) inhibitor, than 11C-(+)3-MPB. Administration of scopolamine, a mAChR antagonist, reduced 11C-(+)3-MPB binding to mAChR in all regions except the cerebellum, and the reduction of 11C-(+)3-MPB uptake was well correlated with the degree of impairment of working memory performance assessed in conscious monkeys. These results demonstrated that PET imaging with 11C-(+)3-MPB could be useful for diagnosis of neurological diseases associated with impaired mAChR function and cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (1990) Deciphering Alzheimer’s disease: the amyloid precursor protein yields new clues. Science 248:1058–1060

    Article  CAS  PubMed  Google Scholar 

  3. Höhmann C, Antuono P, Coyle JT (1998) Basal forebrain cholinergic neurons and Alzheimer’s disease. In: Iversen LL, Iversen SD, Snyder SD (eds) Psychopharmacology of the aging nervous system. Plenum, New York, pp 69–106

    Google Scholar 

  4. Perry EK (1986) The cholinergic hypothesis—ten years on [Review]. Br Med Bull 42:63–69

    CAS  PubMed  Google Scholar 

  5. Rinne JO, Laakso K, Lönnberg P et al (1985) Brain muscarinic receptors in senile dementia. Brain Res 336:19–25

    Article  CAS  PubMed  Google Scholar 

  6. Reinikainen KJ, Riekkinen PJ, Halonen T et al (1987) Decreased muscarinic receptor binding in cerebral cortex and hippocampus in Alzheimer’s disease. Life Sci 41:453–461

    Article  CAS  PubMed  Google Scholar 

  7. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  CAS  PubMed  Google Scholar 

  8. Vora MM, Finn RD, Boothe TE (1983) [N-methyl-11C]Scopolamine: synthesis and distribution in rat brain. J Labelled Comp Radiopharm 20:1229–1234

    Article  CAS  Google Scholar 

  9. Mulholland GK, Jewett DW, Toorongian SA (1988) Routine synthesis of N-[11C-methyl]scopolamine by phosphate mediated reductive methylation with [11C]formaldehyde. Appl Radiat Isot 39:373–379

    Article  CAS  Google Scholar 

  10. Frey KA, Koeppe RA, Mulholland GK et al (1992) In vivo muscarinic cholinergic receptor imaging in human rain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 12:147–1541

    Article  CAS  PubMed  Google Scholar 

  11. Dannals RF, Långström B, Ravert HT et al (1988) Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide. Appl Radiat Isot 39:291–295

    Article  CAS  Google Scholar 

  12. Prenant C, Barre L, Crouzel C (1989) Synthesis of n.c.a. [11C]QNB. J Labelled Comp Radiopharm 26:199–201

    Article  Google Scholar 

  13. Dewey SL, MacGregor RR, Brondie JD et al (1990) Mapping muscarinic receptors in human and baboon brain using [N-11 C-methyl]benztropine. Synapse 5:213–223

    Google Scholar 

  14. Mulholland GK, Otto CA, Jewett DW et al (1992) Synthesis, rodent biodistribution, dosimetry, metabolism and monkey images of carbon-11-labeled (+)-2α-tropanyl benzilate: a central muscarinic receptor imaging agent. J Nucl Med 33:423–430

    CAS  PubMed  Google Scholar 

  15. Koeppe RA, Frey KA, Mulholland GK et al (1994) [11C]Tropanyl benzilate binding to muscarinic cholinergic receptors: methodology and kinetic modeling alterations. J Cereb Blood Flow Metab 14:85–99

    Article  CAS  PubMed  Google Scholar 

  16. Zubieta JK, Koeppe RA, Mulholland GK et al (1998) Quantification of muscarinic cholinergic receptors with [11C]NMPB and positron emission tomography: method development and differentiation of tracer delivery from receptor binding. J Cereb Blood Flow Metab 18:619–631

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Murakami M, Miura S et al (1999) Synthesis and autoradiographic localization of muscarinic cholinergic antagonist N-11C-methyl-3-piperidyl benzilate as a potent radioligand for positron emission tomography. Appl Radiat Isot 50:521–525

    Article  CAS  PubMed  Google Scholar 

  18. Nishiyama S, Tsukada H, Sato K et al (2001) Evaluation of PET ligands (+)N-[11C]ethyl-3-piperidyl benzilate and (+)N-[11C]propyl-3-piperidyl benzilate for muscarinic cholinergic receptors: a PET study with microdialysis in comparison with (+)N-[11C]methyl-3-piperidyl benzilate in the conscious monkey brain. Synapse 40:159–169

    Article  CAS  PubMed  Google Scholar 

  19. Tsukada H, Takahashi K, Miura S et al (2001) Evaluation of novel PET ligands (+)N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB) and its stereoisomer [11C](−)3-MPB for muscarinic cholinergic receptors in the conscious monkey brain: a PET study in comparison with [11C]4-MPB. Synapse 39:182–192

    Article  CAS  PubMed  Google Scholar 

  20. Tsukada H, Kakiuchi T, Nishiyama S et al (2001) Age differences in muscarinic cholinergic receptors assayed with (+)N-[11C]methyl-3-piperidyl benzilate in the brains of conscious monkeys. Synapse 41:248–257

    Article  CAS  PubMed  Google Scholar 

  21. Tsukada H, Nishiyama S, Fukumoto D et al (2004) Effects of acute acetylcholinesterase inhibition on the cerebral cholinergic neuronal system and cognitive function: functional imaging of the conscious monkey brain using animal PET in combination with microdialysis. Synapse 52:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto S, Nishiyama S, Kawamata M et al (2011) Muscarinic receptor occupancy and cognitive impairment: A PET study with [11C](+)3-MPB and scopolamine in conscious monkeys. Neuropsychopharmacology 36:1455–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Biel JH, Abood LG, Hoya WK et al (1961) Central stimulant. II, Cholinergic blocking agents. J Org Chem 26:4096–4103

    Article  CAS  Google Scholar 

  24. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  25. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  26. Sihver S (2000) Development of in vitro and ex vivo positron-emitting tracer techniques and their application to neurotrauma. Thesis in Faculty of Medicine, Uppsala University

    Google Scholar 

  27. Långström B, Antoni G, Gullberg P et al (1986) The synthesis of L-11C-labeled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions. Appl Radiat Isot 37:1141–1145

    Article  Google Scholar 

  28. Irie T, Fukushi K, Namba H et al (1996) Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer’s disease. J Nucl Med 37:649–655

    CAS  PubMed  Google Scholar 

  29. Tsukada H, Harada N, Nishiyama S et al (2000) Ketamine decreased striatal [11C]raclopride binding with no alteration in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: Multi-parametric PET studies combined with microdialysis analysis. Synapse 37:95–103

    Article  CAS  PubMed  Google Scholar 

  30. Tsukada H, Nishiyama S, Kakiuchi T et al (2001) Ketamine alters the availability of striatal dopamine transporter as measured by [11C]β-CFT and [11C]β-CIT-FE in the monkey brain. Synapse 42:273–280

    Article  CAS  PubMed  Google Scholar 

  31. Tsukada H, Miyasato K, Kakiuchi T et al (2002) Comparative effects of methamphetamine and nicotine on the striatal [11C]raclopride binding in unanesthetized monkeys. Synapse 45:207–212

    Article  CAS  PubMed  Google Scholar 

  32. Ohba H, Harada N, Nishiyama S et al (2009) Ketamine/xylazine anesthesia alters [11C]MNPA binding to dopamine D2 receptors and response to methamphetamine challenge in monkey brain. Synapse 63:534–537

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe M, Okada H, Shimizu K et al (1997) A high resolution animal PET scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci 44:1277–1282

    Article  CAS  Google Scholar 

  34. Tsukada H, Ohba H, Nishiyama S et al (2011) Differential effects of stress on [11C]raclopride and [11C]MNPA binding to striatal D2/D3 dopamine receptors: a PET study in conscious monkeys. Synapse 64:84–89

    Article  Google Scholar 

  35. Logan J, Fowler J, Volkow N et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to N-11C-methyl-(−)-cocaine PET studies in human subjects. J Neurochem 10:740–747

    CAS  Google Scholar 

  36. Patlak C, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Dewey SL, Volkow ND, Logan J et al (1990) Age-related decrease in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J Neurosci Res 27:569–575

    Article  CAS  PubMed  Google Scholar 

  38. Suhara T, Inoue O, Kobayashi K et al (1993) Age-related changes inhuman muscarinic acetylcholine receptors measured by positron emission tomography. Neurosci Lett 149:225–228

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida T, Kuwabara Y, Ichiya Y et al (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patient on 11C-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42

    Article  CAS  PubMed  Google Scholar 

  40. Zubieta JK, Koeppe RA, Frey KA et al (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with 11C-NMPB and PET. Synapse 39:275–287

    Article  CAS  PubMed  Google Scholar 

  41. Lee KS, Frey KA, Koeppe RA et al (1996) In vivo quantification of cerebral muscarinic receptors in normal human aging using positron emission tomography and [11C]tropanyl benzilate. J Cereb Blood Flow Metab 16:303–310

    Article  CAS  PubMed  Google Scholar 

  42. Tsukada H, Kreuter J, Maggos CE et al (1996) Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain: an in vivo study using positron emission tomography. J Neurosci 16:7670–7677

    CAS  PubMed  Google Scholar 

  43. Tsukada H, Harada N, Nishiyama S et al (2000) Cholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: PET studies with microdialysis in the conscious monkey brain. J Neurosci 20:7067–7073

    CAS  PubMed  Google Scholar 

  44. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  45. Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer’s disease [Review]. Neuroscience 19:1–28

    Article  CAS  PubMed  Google Scholar 

  46. Hudzik TJ, Wenger GR (1993) Effects of drugs of abuse and cholinergic agents on delayed matching-to-sample responding in the squirrel monkey. J Pharmacol Exp Ther 265:120–127

    CAS  PubMed  Google Scholar 

  47. Tejani-Butt SM, Luthin GR, Wolfe BB et al (1990) N-substituted derivatives of 4-piperidinyl benzilate: affinities for brain muscarinic acetylcholine receptors. Life Sci 47:841–848

    Article  CAS  PubMed  Google Scholar 

  48. Snyder SH, Chang KJ, Kuhar MJ et al (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed Proc 34:1919–1921

    Google Scholar 

  49. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  CAS  PubMed  Google Scholar 

  50. Kiesewetter DO, Lee J, Lang L et al (1995) Preparation of 18F-labeled muscarinic agonist with M2 selectivity. J Med Chem 38:5–8

    Article  CAS  PubMed  Google Scholar 

  51. Jagoda EM, Kiesewetter DO, Shimoji K et al (2003) Regional brain uptake of the muscarinic ligand, [18F]FP-TZTP, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology 44:653–661

    Article  CAS  PubMed  Google Scholar 

  52. Carson RE, Kiesewetter DO, Jagoda E et al (1998) Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 18:1130–1142

    Article  CAS  PubMed  Google Scholar 

  53. Podruchny TA, Connolly C, Bokde A et al (2003) In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse 48:39–44

    Article  CAS  PubMed  Google Scholar 

  54. Yamamoto S, Ouchi Y, Nakatsuka D et al (2012) Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptor. PLoS One 7, e51515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Tsukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tsukada, H., Nishiyama, S., Takahashi, K. (2016). Imaging of Muscarinic Receptors in the Central Nervous System. In: Myslivecek, J., Jakubik, J. (eds) Muscarinic Receptor: From Structure to Animal Models. Neuromethods, vol 107. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2858-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2858-3_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2857-6

  • Online ISBN: 978-1-4939-2858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics