Skip to main content

Experimental Evolution of Escherichia coli Persister Levels Using Cyclic Antibiotic Treatments

  • Protocol
Bacterial Persistence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1333))

Abstract

Persister cells are difficult to study owing to their transient nature and their usually small number in bacterial populations. In the past, numerous attempts have been made to elucidate persistence mechanisms. However, because of the challenges involved in studying persisters and the clear redundancy in mechanisms underlying their generation, our knowledge of molecular pathways to persistence remains incomplete. Here, we describe how to use experimental evolution with cyclic antibiotic treatments to generate mutants with an increased persister level in stationary phase, ranging from the initial ancestral level up to 100 %. This method will help to unravel molecular pathways to persistence, and opens up a myriad of new possibilities in persister research, such as the convenient study of nearly pure persister cultures and the possibility to investigate the role of time and environmental aspects in the evolution of persistence.

*Authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Balaban NQ, Merrin J, Chait R et al (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  3. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  4. Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699–709

    Article  PubMed  Google Scholar 

  5. Manuel J, Zhanel GG, de Kievit T (2010) Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 54:5173–5179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Girgis HS, Harris K, Tavazoie S (2012) Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci U S A 109:12740–12745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. De Groote VN, Verstraeten N, Fauvart M et al (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73–79

    Article  PubMed  Google Scholar 

  9. Leung V, Levesque CM, Lévesque CM (2012) A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194:2265–2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hu Y, Coates ARM (2005) Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett 243:117–124

    Article  CAS  PubMed  Google Scholar 

  11. Dhar N, McKinney JD (2010) Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107:12275–12280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ma C, Sim S, Shi W et al (2010) Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett 303:33–40

    Article  CAS  PubMed  Google Scholar 

  13. Hansen S, Lewis K, Vulić M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Spoering AL, Vulic M, Lewis K et al (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Germain E, Castro-Roa D, Zenkin N et al (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254

    Article  CAS  PubMed  Google Scholar 

  16. Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    Article  PubMed Central  PubMed  Google Scholar 

  17. Keren I, Minami S, Rubin E et al (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–e00111

    Article  PubMed Central  PubMed  Google Scholar 

  18. Keren I, Shah D, Spoering A et al (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Van Acker H, Sass A, Bazzini S et al (2013) Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS One 8:e58943

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kint CI, Verstraeten N, Fauvart M et al (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20:577–585

    Article  CAS  PubMed  Google Scholar 

  21. Amato SM, Fazen CH, Henry TC et al (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70

    Article  PubMed Central  PubMed  Google Scholar 

  22. Balaban NQ, Gerdes K, Lewis K et al (2013) A problem of persistence: still more questions than answers? Nat Rev Microbiol 11:587–591

    Article  CAS  PubMed  Google Scholar 

  23. Blaby IK, Lyons BJ, Wroclawska-Hughes E et al (2012) Experimental evolution of a facultative thermophile from a mesophilic ancestor. Appl Environ Microbiol 78:144–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Barrick JE, Yu DS, Yoon SH et al (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  25. Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mulcahy LR, Burns JL, Lory S et al (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Fridman O, Goldberg A, Ronin I et al (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418–421

    Article  CAS  PubMed  Google Scholar 

  28. Yu J, Xiao J, Ren X et al (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311:1600–1603

    Article  CAS  PubMed  Google Scholar 

  29. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    Article  CAS  PubMed  Google Scholar 

  30. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  31. Liebens V, Defraine V, Van der Leyden A et al (2014) A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 71:39–54

    Article  CAS  PubMed  Google Scholar 

  32. Drlica K (2003) The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 52:11–17

    Article  CAS  PubMed  Google Scholar 

  33. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are fellows of the Research Foundation—Flanders (FWO) and the Agency for Innovation by Science and Technology (IWT). The research was further supported by grants from the KU Leuven Research Council (PF/10/010; IDO/09/010) and the IAP-BELSPO initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van den Bergh, B., Michiels, J.E., Michiels, J. (2016). Experimental Evolution of Escherichia coli Persister Levels Using Cyclic Antibiotic Treatments. In: Michiels, J., Fauvart, M. (eds) Bacterial Persistence. Methods in Molecular Biology, vol 1333. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2854-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2854-5_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2853-8

  • Online ISBN: 978-1-4939-2854-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics