Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy

  • Thomas R. Hurd
  • Carlos G. Sanchez
  • Felipe K. Teixeira
  • Chris Petzold
  • Kristen Dancel-Manning
  • Ju-Yu S. Wang
  • Ruth Lehmann
  • Feng-Xia A. LiangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1328)


The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure.


Drosophila ovary Germline Transmission electron microscopy (TEM) Mitochondria Cristae Focused ion beam scanning electron microscopy (FIB-SEM) 



We would like to thank NYULMC OCS for the support to Microscopy Core, Edward Eng and William Rice from New York Structure Biology Center for the help of FIB-SEM imaging. TRH was supported by CIHR; FKT by EMBO and HFSP long-term fellowships; CS by NIH F31/HD080380. RL is an HHMI investigator and supported by NIH R01/R37HD41900.


  1. 1.
    Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087CrossRefPubMedGoogle Scholar
  2. 2.
    He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619CrossRefPubMedGoogle Scholar
  3. 3.
    Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232:559–574CrossRefPubMedGoogle Scholar
  4. 4.
    Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168CrossRefPubMedGoogle Scholar
  5. 5.
    Bozzola JJ, Lonnie D (1999) Electron microscopy, principles and techniques for biologists, 2nd edn. Jones and Bartlett, Sudbury, MAGoogle Scholar
  6. 6.
    Zhang S, Chen EH (2008) Ultrastructural analysis of myoblast fusion in Drosophila. Methods Mol Biol 475:275–297Google Scholar
  7. 7.
    Cummings MR, Brown NM, King RC (1971) The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster. 3. Formation of the vitelline membrane. Z Zellforsch Mikrosk Anat 118:482–492CrossRefPubMedGoogle Scholar
  8. 8.
    Cummings MR, King RC (1970) Ultrastructural changes in nurse and follicle cells during late stages of oogenesis in Drosophila melanogaster. Z Zellforsch Mikrosk Anat 110:1–8CrossRefPubMedGoogle Scholar
  9. 9.
    Mahowald AP (1972) Ultrastructural observations on oogenesis in Drosophila. J Morphol 137:29–48CrossRefPubMedGoogle Scholar
  10. 10.
    Geigy R (1931) Action de l’ultra-violet sur le pole germinal dans l’oeuf de Drosophila melanogaster (Castration et mutabilite). Rev Suisse Zool 38:187–288 Google Scholar
  11. 11.
    Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A 71:1016–1020PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Mahowald AP (1968) Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J Exp Zool 167:237–261CrossRefPubMedGoogle Scholar
  13. 13.
    Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213CrossRefPubMedGoogle Scholar
  14. 14.
    Mahowald AP, Strassheim JM (1970) Intercellular migration of centrioles in the germarium of Drosophila melanogaster. An electron microscopic study. J Cell Biol 45:306–320PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Tazuke SI, Schulz C, Gilboa L et al (2002) A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129:2529–2539PubMedGoogle Scholar
  16. 16.
    Hayat MA (2000) Principles and techniques of electron microscopy biological applications, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Hopwood D (1969) Fixation of proteins by osmium tetroxide, potassium dichromate and potassium permanganate. Model experiments with bovine serum albumin and bovine gamma-globulin. Histochemie 18:250–260CrossRefPubMedGoogle Scholar
  18. 18.
    Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    King RC (1970) Ovarian Development in Drosophila melanogaster. Academic Press, New YorkGoogle Scholar
  20. 20.
    Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech 13:165–174CrossRefPubMedGoogle Scholar
  21. 21.
    Studer D, Humbel BM, Chiquet M (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130:877–889CrossRefPubMedGoogle Scholar
  22. 22.
    Bushby AJ, P’Ng KM, Young RD et al (2011) Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6:845–858CrossRefPubMedGoogle Scholar
  23. 23.
    Merchan-Perez A, Rodriguez JR, Alonso-Nanclares L et al (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:18PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wei D, Jacobs S, Modla S et al (2012) High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. Biotechniques 53:41–48PubMedGoogle Scholar
  25. 25.
    Kelley RO, Dekker RA, Bluemink JG (1973) Ligand-mediated osmium binding: its application in coating biological specimens for scanning electron microscopy. J Ultrastruct Res 45:254–258CrossRefPubMedGoogle Scholar
  26. 26.
    Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2:2480–2491CrossRefPubMedGoogle Scholar
  28. 28.
    Wilke SA, Antonios JK, Bushong EA et al (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507–522PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thomas R. Hurd
    • 1
    • 2
    • 3
  • Carlos G. Sanchez
    • 1
    • 2
    • 3
  • Felipe K. Teixeira
    • 1
    • 2
    • 3
  • Chris Petzold
    • 4
  • Kristen Dancel-Manning
    • 4
  • Ju-Yu S. Wang
    • 1
    • 2
    • 3
  • Ruth Lehmann
    • 1
    • 2
    • 3
  • Feng-Xia A. Liang
    • 3
    • 4
    Email author
  1. 1.Howard Hughes Medical Institute (HHMI)New York University School of MedicineNew YorkUSA
  2. 2.Kimmel Center for Biology and Medicine of the Skirball InstituteNew York University School of MedicineNew YorkUSA
  3. 3.Department of Cell BiologyNew York University School of MedicineNew YorkUSA
  4. 4.Office of Collaborative Science Microscopy CoreNew York University School of MedicineNew YorkUSA

Personalised recommendations