Skip to main content

Epigenetic Methodologies for the Study of Celiac Disease

  • Protocol
Book cover Celiac Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1326))

Abstract

Epigenetic regulation of gene expression is an important event for normal cellular homeostasis. Gene expression may be “switched” on or “turned” off via epigenetic means through adjustments in the architecture of DNA. These structural alterations result from histone posttranslation modifications such as acetylation and methylation on key arginine and lysine residues, or by alterations to DNA methylation. Other known epigenetic mechanisms invoke histone variant exchange or utilize noncoding RNAs (lncRNA/miRNA). Drugs which can target the epigenetic regulatory machinery are currently undergoing clinical trials in a wide variety of autoimmune diseases and cancer.

Here we describe RNA isolation and the subsequent Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) methods, post-epigenetic drug treatment, to identify genes, which may be responsive to such epigenetic targeting agents. In addition, we depict a chromatin immunoprecipitation (ChIP) assay to determine the association between chromatin transcription markers and DNA following pretreatment of cell cultures with a histone deacetylase inhibitor (HDi). This assay allows us to determine whether treatment with an HDi dynamically remodels the promoter region of genes, as judged by the differences in the PCR product between our treated and untreated samples. Finally we describe two commonly used methodologies for analyzing DNA methylation. The first, methylation-sensitive high resolution melt analysis (MS-HRM) is used for methylation screening of regions of interest, to identify potential epigenetic “hotspots.” The second, quantitative methylation specific PCR (qMSP) is best applied when these hotspots are known, and offers a high-throughput, highly sensitive means of quantifying methylation at specific CpG dinucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13. doi:10.1093/ije/dyr184

    Article  CAS  PubMed  Google Scholar 

  2. Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15(2):551–589. doi:10.1089/ars.2010.3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12(7):647–656. doi:10.1038/embor.2011.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. doi:10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  5. Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development 140(12):2513–2524. doi:10.1242/dev.091439

    Article  CAS  PubMed  Google Scholar 

  6. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  7. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213. doi:10.1038/321209a0

    Article  CAS  PubMed  Google Scholar 

  8. Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335(6069):709–712. doi:10.1126/science.1214453

    Article  CAS  PubMed  Google Scholar 

  9. Chedin F (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 101:255–285. doi:10.1016/b978-0-12-387685-0.00007-x

    Article  CAS  PubMed  Google Scholar 

  10. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556. doi:10.1038/416552a

    Article  CAS  PubMed  Google Scholar 

  11. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cooper DN, Krawczak M (1989) Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet 83(2):181–188

    Article  CAS  PubMed  Google Scholar 

  13. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745. doi:10.1073/pnas.052410099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Kramer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392. doi:10.1038/nature09147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Di Leva G, Croce CM (2013) miRNA profiling of cancer. Curr Opin Genet Dev 23(1):3–11. doi:10.1016/j.gde.2013.01.004

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14(8):535–548. doi:10.1038/nrg3471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73(2):473–477. doi:10.1158/ 0008-5472.can-12-3731

  18. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799(10–12):694–701. doi:10.1016/j.bbagrm.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  19. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46. doi:10.1016/j.cell.2013.06.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125. doi:10.1038/ng.717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Buning C, Cohain A, Cichon S, D’Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124. doi:10.1038/nature11582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sato F, Shibata D, Harpaz N, Xu Y, Yin J, Mori Y, Wang S, Olaru A, Deacu E, Selaru FM, Kimos MC, Hytiroglou P, Young J, Leggett B, Gazdar AF, Toyooka S, Abraham JM, Meltzer SJ (2002) Aberrant methylation of the HPP1 gene in ulcerative colitis-associated colorectal carcinoma. Cancer Res 62(23):6820–6822

    CAS  PubMed  Google Scholar 

  23. Ventham NT, Kennedy NA, Nimmo ER, Satsangi J (2013) Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 145(2):293–308. doi:10.1053/j.gastro.2013.05.050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Megiorni F, Mora B, Bonamico M, Barbato M, Montuori M, Viola F, Trabace S, Mazzilli MC (2008) HLA-DQ and susceptibility to celiac disease: evidence for gender differences and parent-of-origin effects. Am J Gastroenterol 103(4):997–1003. doi:10.1111 /j.1572-0241.2007.01716.x

  25. Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L, Irastorza I, Elcoroaristizabal X, Jauregi-Miguel A, Lopez-Euba T, Tutau C, de Pancorbo MM, Vitoria JC, Bilbao JR (2014) Coregulation and modulation of NFkappaB-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Hum Mol Genet 23(5):1298–1310. doi:10.1093/hmg/ddt520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA, Siegmund B (2006) Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176(8):5015–5022

    Article  CAS  PubMed  Google Scholar 

  27. Glauben R, Batra A, Stroh T, Erben U, Fedke I, Lehr HA, Leoni F, Mascagni P, Dinarello CA, Zeitz M, Siegmund B (2008) Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice. Gut 57(5):613–622. doi:10.1136/gut.2007.134650

    Article  CAS  PubMed  Google Scholar 

  28. Glauben R, Siegmund B (2011) Inhibition of histone deacetylases in inflammatory bowel diseases. Mol Med 17(5–6):426–433. doi:10.2119/molmed.2011.00069

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Rampertab SD, Forde KA, Green PH (2003) Small bowel neoplasia in coeliac disease. Gut 52(8):1211–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Swinson CM, Slavin G, Coles EC, Booth CC (1983) Coeliac disease and malignancy. Lancet 1(8316):111–115

    Article  CAS  PubMed  Google Scholar 

  31. Bergmann F, Singh S, Michel S, Kahlert C, Schirmacher P, Helmke B, Von Knebel Doeberitz M, Kloor M, Blaker H (2010) Small bowel adenocarcinomas in celiac disease follow the CIM-MSI pathway. Oncol Rep 24(6):1535–1539

    CAS  PubMed  Google Scholar 

  32. Diosdado B, Buffart TE, Watkins R, Carvalho B, Ylstra B, Tijssen M, Bolijn AS, Lewis F, Maude K, Verbeke C, Nagtegaal ID, Grabsch H, Mulder CJ, Quirke P, Howdle P, Meijer GA (2010) High-resolution array comparative genomic hybridization in sporadic and celiac disease-related small bowel adenocarcinomas. Clin Cancer Res 16(5):1391–1401. doi:10.1158/1078-0432.ccr-09-1773

    Article  CAS  PubMed  Google Scholar 

  33. Capuano M, Iaffaldano L, Tinto N, Montanaro D, Capobianco V, Izzo V, Tucci F, Troncone G, Greco L, Sacchetti L (2011) MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce goblet cells characterize the small intestine of celiac patients. PLoS One 6(12):e29094. doi:10.1371/journal.pone.0029094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724. doi:10.1038/onc.2009.19

    Article  CAS  PubMed  Google Scholar 

  35. Gray SG (2011) Targeting Huntington’s disease through histone deacetylases. Clin Epigenetics 2(2):257–277. doi:10.1007/s13148-011-0025-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gray SG (2013) Perspectives on epigenetic-based immune intervention for rheumatic diseases. Arthritis Res Ther 15(2):207. doi:10.1186/ar4167

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5. doi:10.1016/j.jaut.2013.01.010

    Article  PubMed  Google Scholar 

  38. Edwards AJ, Pender SL (2011) Histone deacetylase inhibitors and their potential role in inflammatory bowel diseases. Biochem Soc Trans 39(4):1092–1095. doi:10.1042/bst0391092

    Article  CAS  PubMed  Google Scholar 

  39. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang RY, Gehrke CW, Ehrlich M (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8(20):4777–4790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Murphy TM, Sullivan L, Lane C, O’Connor L, Barrett C, Hollywood D, Lynch T, Lawler M, Perry AS (2011) In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 71(1):1–17. doi:10.1002/pros.21212

    Article  CAS  PubMed  Google Scholar 

  42. Perry AS, Liyanage H, Lawler M, Woodson K (2007) Discovery of DNA hypermethylation using a DHPLC screening strategy. Epigenetics 2(1):43–49

    Article  PubMed  Google Scholar 

  43. Prencipe M, McGoldrick A, Perry AS, O’Grady A, Phelan S, McGrogan B, Fitzpatrick P, Watson JA, Furlong F, Brennan DJ, Lawler M, Kay E, McCann A (2010) MAD2 downregulation in hypoxia is independent of promoter hypermethylation. Cell Cycle 9(14):2856–2865

    Article  CAS  PubMed  Google Scholar 

  44. Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3(12):1903–1908. doi:10.1038/nprot.2008.191

    Article  CAS  PubMed  Google Scholar 

  45. Perry AS, Loftus B, Moroose R, Lynch TH, Hollywood D, Watson RW, Woodson K, Lawler M (2007) In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br J Cancer 96(10):1587–1594. doi:10.1038/sj.bjc.6603767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Einarsdottir E, Koskinen LL, Dukes E, Kainu K, Suomela S, Lappalainen M, Ziberna F, Korponay-Szabo IR, Kurppa K, Kaukinen K, Adany R, Pocsai Z, Szeles G, Farkkila M, Turunen U, Halme L, Paavola-Sakki P, Not T, Vatta S, Ventura A, Lofberg R, Torkvist L, Bresso F, Halfvarson J, Maki M, Kontula K, Saarialho-Kere U, Kere J, D’Amato M, Saavalainen P (2009) IL23R in the Swedish, Finnish, Hungarian and Italian populations: association with IBD and psoriasis, and linkage to celiac disease. BMC Med Genet 10:8. doi:10.1186/1471-2350-10-8

    Article  PubMed Central  PubMed  Google Scholar 

  47. Fernandez S, Molina IJ, Romero P, Gonzalez R, Pena J, Sanchez F, Reynoso FR, Perez-Navero JL, Estevez O, Ortega C, Santamaria M (2011) Characterization of gliadin-specific Th17 cells from the mucosa of celiac disease patients. Am J Gastroenterol 106(3):528–538. doi:10.1038/ajg.2010.465

    Article  CAS  PubMed  Google Scholar 

  48. Harris KM, Fasano A, Mann DL (2008) Cutting edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease. J Immunol 181(7):4457–4460

    Article  CAS  PubMed  Google Scholar 

  49. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64(6):1975–1986

    Article  CAS  PubMed  Google Scholar 

  51. Baird AM, Dockry E, Daly A, Stack E, Doherty DG, O’Byrne KJ, Gray SG (2013) IL-23R is epigenetically regulated and modulated by chemotherapy in non-small cell lung cancer. Front Oncol 3:162. doi:10.3389/fonc.2013.00162

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of Alexandra Tuzova in the design of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Perry, A.S., Baird, AM., Gray, S.G. (2015). Epigenetic Methodologies for the Study of Celiac Disease. In: Ryan, A. (eds) Celiac Disease. Methods in Molecular Biology, vol 1326. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2839-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2839-2_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2838-5

  • Online ISBN: 978-1-4939-2839-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics