Skip to main content

The Ex Vivo IFN-γ Enzyme-Linked Immunospot (ELISpot) Assay

  • Protocol
Malaria Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1325))

Abstract

The quantification of single cell interferon-gamma (IFN-γ) release for assessing cellular immune responses using the Enzyme-linked immunospot (ELISPOT) assay is an invaluable technique in immunology. Peripheral blood mononuclear cells (PBMC) are stimulated in vitro with recombinant proteins, peptides and recently whole malaria organisms. Stimulation may be short term (20–36 h) or long term (cultured ELISpot, up to 7 days). ELISpot is also able to quantify other cytokines secreted by antigen-specific T-cells, such as interleukin-2, interleukin-5, and other interleukins. ELISpot is playing an important role especially in vaccine research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czerkinsky CC et al (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121

    Article  CAS  PubMed  Google Scholar 

  2. Sedgwick JD, Holt PG (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57(1–3):301–309

    Article  CAS  PubMed  Google Scholar 

  3. Janetzki S et al (2004) Evaluation of Elispot assays: influence of method and operator on variability of results. J Immunol Methods 291(1–2):175–183

    Article  CAS  PubMed  Google Scholar 

  4. Janetzki S et al (2005) Standardization and validation issues of the ELISPOT assay. Methods Mol Biol 302:51–86

    CAS  PubMed  Google Scholar 

  5. Cox JH et al (2002) Accomplishing cellular immune assays for evaluation of vaccine efficacy in developing countries. In: Rose NR, Hamilton RG, Detrick B (eds) Manual clinical laboratory immunology. ASM Press, Washington, DC, pp 301–315

    Google Scholar 

  6. Scheibenbogen C et al (2000) Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods 244(1–2):81–89

    Article  CAS  PubMed  Google Scholar 

  7. Janetzki S, Britten CM (2012) The impact of harmonization on ELISPOT assay performance. Methods Mol Biol 792:25–36

    Article  CAS  PubMed  Google Scholar 

  8. Slota M et al (2011) ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 10(3):299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang W, Lehmann PV (2012) Objective, user-independent ELISPOT data analysis based on scientifically validated principles. Methods Mol Biol 792:155–171

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann PV, Zhang W (2012) Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol 792:3–23

    Article  CAS  PubMed  Google Scholar 

  11. Sedegah M et al (2011) Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 6(10):e24586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sedegah M et al (2011) Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein. Malar J 9:241

    Article  Google Scholar 

  13. Dodoo D et al (2011) Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 10:168

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tamminga C et al (2011) Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 6(10):e25868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chuang I et al (2013) DNA prime/adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PLoS One 8(2):1371

    Article  Google Scholar 

  16. Sedegah M et al (2013) Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar J 12:185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rosenberg ES et al (1999) Characterization of HIV-1-specific T-helper cells in acute and chronic infection. Immunol Lett 66(1–3):89–93

    Article  CAS  PubMed  Google Scholar 

  18. Epstein JE et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8+ T Cell immunity. Science 334:475–480

    Article  CAS  PubMed  Google Scholar 

  19. Seder RA et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341(6152):1359–1365

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen M et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rammensee H et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  22. Dodoo D et al (2008) Cohort study of the association of antibody levels to AMA1, MSP119, MSP3 and GLURP with protection from clinical malaria in Ghanaian children. Malar J 7:142

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The following have made major contributions to the development and use of this assay: Harini Ganeshan, Maria Belmonte, Jun Huang, Esteban Abot, and Arnel Belmonte, and helped write this chapter with Michael R. Hollingdale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Sedegah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sedegah, M. (2015). The Ex Vivo IFN-γ Enzyme-Linked Immunospot (ELISpot) Assay. In: Vaughan, A. (eds) Malaria Vaccines. Methods in Molecular Biology, vol 1325. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2815-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2815-6_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2814-9

  • Online ISBN: 978-1-4939-2815-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics