Skip to main content

Computing Conformational Free Energies of iGluR Ligand-Binding Domains

  • Protocol
Ionotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 106))

Abstract

Ionotropic glutamate receptors (iGluRs) transduce chemical signals at synapses into electrical impulses. This function relies on concerted conformational changes that are propagated among the linked domains of the tetrameric protein assembly making up each receptor. A key conformational change is the closure of the ligand-binding domain (LBD) upon agonist binding, which eventually gates the transmembrane ion channel domain. The free energy that becomes available for gating transitions is governed by the LBD free energy landscapes for apo and ligand-bound states. These landscapes describe the thermodynamic equilibrium among various LBD conformations. Delineating these landscapes is essential for understanding the molecular driving forces underlying iGluR function. Molecular dynamics free energy simulations offer a means for estimating these quantities, which are difficult to extract from experimental results alone. Here, we describe the process of carrying out a free energy computation using an umbrella sampling strategy for characterizing large-scale conformational changes in iGluR LBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar J, Mayer ML (2013) Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol 75:313–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Arinaminpathy Y, Sansom MS, Biggin PC (2006) Binding site flexibility: molecular simulation of partial and full agonists within a glutamate receptor. Mol Pharmacol 69(1):11–18

    CAS  PubMed  Google Scholar 

  3. Mamonova T, Speranskiy K, Kurnikova M (2008) Interplay between structural rigidity and electrostatic interactions in the ligand binding domain of GluR2. Proteins 73(3):656–671

    Article  CAS  PubMed  Google Scholar 

  4. Vijayan R, Sahai MA, Czajkowski T, Biggin PC (2010) A comparative analysis of the role of water in the binding pockets of ionotropic glutamate receptors. Phys Chem Chem Phys 12(42):14057–14066

    Article  CAS  PubMed  Google Scholar 

  5. Cheng X, Ivanov I (2012) Molecular dynamics. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 1, Methods in molecular biology. Springer, New York, pp 243–285

    Chapter  Google Scholar 

  6. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  8. van Gunsteren WF (1987) GROMOS. Groningen molecular simulation program package. University of Groningen, Groningen

    Google Scholar 

  9. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  11. Bowers KJ, Chow E, Huageng X, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa

    Google Scholar 

  12. Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88

    Article  CAS  PubMed  Google Scholar 

  13. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    Article  CAS  Google Scholar 

  14. MacKerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  PubMed  Google Scholar 

  15. Jorgensen WL, Tirado–Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  16. MacKerell AD Jr, Feig M, Brooks CL III (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699

    Article  CAS  PubMed  Google Scholar 

  17. Perilla JR, Woolf TB (2012) Towards the prediction of order parameters from molecular dynamics simulations in proteins. J Chem Phys 136(16):164101

    Article  PubMed Central  PubMed  Google Scholar 

  18. Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated web tool. Protein Sci 14:633–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chennubhotla C, Bahar I (2007) Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol 3:1716–1726

    CAS  PubMed  Google Scholar 

  20. Skjaerven L, Hollup SM, Reuter N (2009) Normal mode analysis for proteins. J Mol Struct (THEOCHEM) 898:42–48

    Article  CAS  Google Scholar 

  21. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300

    Article  CAS  Google Scholar 

  22. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282

    Article  CAS  Google Scholar 

  23. Torrie GM, Valleau JP (1974) Monte-Carlo free energy estimates using non-Boltzmann sampling. Application to the subcritical Lennard-Jones fluid. Chem Phys Lett 28(4):578–581

    Article  CAS  Google Scholar 

  24. Kästner J (2011) Umbrella sampling. WIREs Comput Mol Sci 1(6):932–942

    Article  Google Scholar 

  25. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  26. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198

    Article  CAS  PubMed  Google Scholar 

  27. Boczko EM, Brooks CL III (1993) Constant-temperature free energy surfaces for physical and chemical processes. J Phys Chem 97:4509–4513

    Article  CAS  Google Scholar 

  28. Souaille M, Roux B (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135:40–57

    Article  CAS  Google Scholar 

  29. Lau AY, Roux B (2007) The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15:1203–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28:165–181

    Article  CAS  PubMed  Google Scholar 

  31. Mamonova T, Yonkunas MJ, Kurnikova MG (2008) Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain. Biochemistry 47(42):11077–11085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lau AY, Roux B (2011) The hidden energetics of ligand binding and activation in a glutamate receptor. Nat Struct Mol Biol 18(3):283–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yao Y, Belcher J, Berger AJ, Mayer ML, Lau AY (2013) Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 21:1788–1799

    Article  CAS  PubMed  Google Scholar 

  34. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  37. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  PubMed  Google Scholar 

  38. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vanommeslaeghe K, Prabhu Raman E, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Huang L, Roux B (2013) Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data. J Chem Theory Comput 9(8):3543–3556

    Article  CAS  Google Scholar 

  41. Wojtas-Niziurski W, Meng Y, Roux B, Bernèche S (2013) Self-learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J Chem Theory Comput 9(4):1885–1895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Park S, Kim T, Im W (2012) Transmembrane helix assembly by window exchange umbrella sampling. Phys Rev Lett 108:108102

    Article  PubMed Central  PubMed  Google Scholar 

  43. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

    Google Scholar 

  44. Madden DR, Armstrong N, Svergun D, Pérez J, Vachette P (2005) Solution X-ray scattering evidence for agonist- and antagonist-induced modulation of cleft closure in a glutamate receptor ligand-binding domain. J Biol Chem 280(25):23637–23642

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed AH, Loh AP, Jane DE, Oswald RE (2007) Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy. J Biol Chem 282(17):12773–12784

    Article  CAS  PubMed  Google Scholar 

  46. Landes CF, Rambhadran A, Taylor JN, Salatan F, Jayaraman V (2011) Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat Chem Biol 7(3):168–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Y. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yu, A., Wied, T., Belcher, J., Lau, A.Y. (2016). Computing Conformational Free Energies of iGluR Ligand-Binding Domains. In: Popescu, G. (eds) Ionotropic Glutamate Receptor Technologies. Neuromethods, vol 106. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2812-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2812-5_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2811-8

  • Online ISBN: 978-1-4939-2812-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics