Skip to main content

Extracting Rate Constants for NMDA Receptor Gating from One-Channel Current Recordings

  • Protocol
Ionotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 106))

Abstract

Like all neurotransmitter-gated channels, in response to agonist binding, ionotropic glutamate receptors produce electrical signals whose amplitudes and durations reflect intramolecular transitions between non-conducting (closed) and conducting (open) receptor conformations. Thus, delineating the reaction mechanism of synaptic channels represents an important step in understanding how information is transferred and processed in the nervous system. The recorded single-channel signal captures in real-time multiple series of discrete current amplitudes, whose complex duration distributions contain valuable information about the underlying kinetic mechanism but in most cases are difficult to decipher. For NMDA receptors, we identified conditions in which the receptor populates only two conductance levels, corresponding to closed and open channels, and we developed procedures that can organize the entire succession of closed and open durations into a comprehensive, reproducible, and testable reaction mechanism. In this chapter, we describe how to select, process, and idealize current traces recorded from patches containing one NMDA receptor, and how to build increasingly more accurate kinetic models that include transitions from the sub-millisecond to the hundreds of minutes time scales. The resulting schemes can be tested by comparing model simulations and experimental recordings elicited with similar stimulation patterns. The principles and methodology outlined here can be adapted and extended to other ion channels to gather deeper insight into the order and rates of intramolecular movements that produce stimulus-elicited electrical signals in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53(6):741–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  3. Neher E (1981) Unit conductance studies in biological membranes. In: Baker PF (ed)Techniques in Cellular Physiology. pp. 1–32, Elsevier, Amsterdam

    Google Scholar 

  4. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  PubMed  Google Scholar 

  5. Sigworth FJ, Neher E (1980) Single Na+ channel currents observed in cultured rat muscle cells. Nature 287(5781):447–449

    Article  CAS  PubMed  Google Scholar 

  6. Kapanidis AN, Strick T (2009) Biology, one molecule at a time. Trends Biochem Sci 34(5):234–243

    Article  CAS  PubMed  Google Scholar 

  7. Nie S, Zare RN (1997) Optical detection of single molecules. Annu Rev Biophys Biomol Struct 26:567–596

    Article  CAS  PubMed  Google Scholar 

  8. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375(2):219–228

    Article  CAS  PubMed  Google Scholar 

  9. Neher E, Steinbach JH (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol 277:153–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci 211(1183):205–235

    Article  CAS  PubMed  Google Scholar 

  11. Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond B Biol Sci 300(1098):1–59

    Article  CAS  PubMed  Google Scholar 

  12. Maki BA, Cummings KA, Paganelli MA, Murthy SE, Popescu GK (2014) One-channel cell-attached patch-clamp recording. J Vis Exp 9(88)

    Google Scholar 

  13. Talukder I, Kazi R, Wollmuth LP (2011) GluN1-specific redox effects on the kinetic mechanism of NMDA receptor activation. Biophys J 101(10):2389–2398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Talukder I, Wollmuth LP (2011) Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening. J Gen Physiol 138(2):179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Popescu G (2005) Mechanism-based targeting of NMDA receptor functions. Cell Mol Life Sci 62(18):2100–2111

    Article  CAS  PubMed  Google Scholar 

  16. Popescu G (2005) Principles of N-methyl-D-aspartate receptor allosteric modulation. Mol Pharmacol 68(4):1148–1155

    Article  CAS  PubMed  Google Scholar 

  17. Amico-Ruvio S, Popescu G (2010) Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys J 98(7):1160–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Borschel WF, Myers JM, Kasperek EM, Smith TP, Graziane NM, Nowak LM, Popescu GK (2012) Gating reaction mechanism of neuronal NMDA receptors. J Neurophysiol 108(11):3105–3115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kussius CL, Popescu GK (2009) Kinetic basis of partial agonism at NMDA receptors. Nat Neurosci 12(9):1114–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Popescu G, Robert A, Howe JR, Auerbach A (2004) Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430(7001):790–793

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Howe JR, Popescu GK (2008) Distinct gating modes determine the biphasic relaxation of NMDA receptor currents. Nat Neurosci 11(12):1373–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Colquhoun D, Hatton CJ, Hawkes AG (2003) The quality of maximum likelihood estimates of ion channel rate constants. J Physiol 547(Pt 3):699–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Colquhoun D, Hawkes AG, Srodzinski K (1996) Joint distributions of apparent open and shut times of single-ion channels and maximum likelihood fitting of mechanisms. Philos Trans Math Phys Eng Sci 354(1718):2555–2590

    Article  Google Scholar 

  24. Hawkes AG, Jalali A, Colquhoun D (1990) The distributions of the apparent open times and shut times in a single channel record when brief events cannot be detected. Philos Trans Phys Sci Eng 332(1627):511–538

    Article  Google Scholar 

  25. Hawkes AG, Jalali A, Colquhoun D (1992) Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Philos Trans R Soc Lond B Biol Sci 337(1282):383–404

    Article  CAS  PubMed  Google Scholar 

  26. Qin F (2014) Principles of single-channel kinetic analysis. In: Martina M, Taverna S (eds) Patch-clamp methods and protocols, vol 1183. Springer, New York, pp 371–399

    Google Scholar 

  27. Qin F, Auerbach A, Sachs F (2000) A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J 79(4):1915–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Qin F, Auerbach A, Sachs F (2000) Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J 79(4):1928–1944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nicolai C, Sachs F (2013) Solving ion channel kinetics with the QuB software. Biophys Rev Lett 08(03n04):191–211

    Article  Google Scholar 

  30. Ascher P, Bregestovski P, Nowak L (1988) NMDA-activated channels of mouse central neurones in magnesium-free solutions. J Physiol 399:207–226

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  32. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345(6273):347–350

    Article  CAS  PubMed  Google Scholar 

  33. Anson LC, Chen PE, Wyllie DJA, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18(2):581–589

    CAS  PubMed  Google Scholar 

  34. Howe JR, Colquhoun D, Cull-Candy SG (1988) On the kinetics of large-conductance glutamate-receptor ion channels in rat cerebellar granule neurons. Proc R Soc Lond B Biol Sci 233(1273):407–422

    Article  CAS  PubMed  Google Scholar 

  35. Wyllie DJ, Behe P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol 510(Pt 1):1–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Anson LC, Schoepfer R, Colquhoun D, Wyllie DJ (2000) Single-channel analysis of an NMDA receptor possessing a mutation in the region of the glutamate binding site. J Physiol 527(Pt 2):225–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Colquhoun D, Hawkes AG (1990) Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed. Proc R Soc Lond B Biol Sci 240(1299):453–477

    Article  CAS  PubMed  Google Scholar 

  38. Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(Pt 2):345–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Popescu G, Auerbach A (2003) Modal gating of NMDA receptors and the shape of their synaptic response. Nat Neurosci 6(5):476–483

    CAS  PubMed  Google Scholar 

  40. Schorge S, Elenes S, Colquhoun D (2005) Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J Physiol

    Google Scholar 

  41. Kussius CL, Kaur N, Popescu GK (2009) Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J Neurosci 29(21):6819–6827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Popescu G, Auerbach A (2004) The NMDA receptor gating machine: lessons from single channels. Neuroscientist 10(3):192–198

    Article  CAS  PubMed  Google Scholar 

  43. Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97(3):738–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Qin F (2004) Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys J 86(3):1488–1501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Qin F, Auerbach A, Sachs F (1997) Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci 264(1380):375–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Qin F, Li L (2004) Model-based fitting of single-channel dwell-time distributions. Biophys J 87(3):1657–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Horn R (1987) Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys J 51(2):255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Popescu GK (2012) Modes of glutamate receptor gating. J Physiol 590(1):73–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Borschel WF, Murthy SE, Kasperek EM, Popescu GK (2011) NMDA receptor activation requires remodelling of intersubunit contacts within ligand-binding heterodimers. Nat Commun 2:498

    Article  PubMed Central  PubMed  Google Scholar 

  50. Auerbach A, Zhou Y (2005) Gating reaction mechanisms for NMDA receptor channels. J Neurosci 25(35):7914–7923

    Article  PubMed  Google Scholar 

  51. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health: RO1NS052669 (to G.K.P.) and F31NS086765 (to K.A.C.); and from the American Heart Association: EIA9100012 (to G.K.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela K. Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cummings, K.A., Iacobucci, G.J., Popescu, G.K. (2016). Extracting Rate Constants for NMDA Receptor Gating from One-Channel Current Recordings. In: Popescu, G. (eds) Ionotropic Glutamate Receptor Technologies. Neuromethods, vol 106. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2812-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2812-5_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2811-8

  • Online ISBN: 978-1-4939-2812-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics