Skip to main content

Calcium Imaging to Study NMDA Receptor-mediated Cellular Responses

  • Protocol
Ionotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 106))

Abstract

Measuring changes in intracellular Ca2+ concentration ([Ca2+] i ) with optical methods is a useful approach to study the function and regulation of Ca2+-permeable ion channels, such as ionotropic glutamate receptors. Here we describe a practical method for monitoring changes in [Ca2+] i that employs the widely used Ca2+ indicator, fura-2. Upon binding Ca2+, the excitation maximum of fura-2 shifts from 380 to 340 nm. Therefore, the ratio of fura-2 fluorescence from cells excited at 340 relative to 380 nm tracks changes in [Ca2+] i ; importantly this ratio is independent of dye concentration, optical path length, or illumination intensity. We provide instructions for calibrating an imaging system and using ratio-metric analysis for processing fura-2 fluorescence images to represent [Ca2+] i . Common technical problems are discussed in a section devoted to troubleshooting. Fura-2-based digital imaging has become a widely used technique with broad applicability. We describe methods to accomplish particularly common [Ca2+] i imaging goals; however, these provide a versatile foundation that can be further developed into more complex approaches to acquire [Ca2+] i -dependent images with higher temporal or spatial resolution, and from more challenging preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura T et al (2000) Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 20:8365–8376

    CAS  PubMed  Google Scholar 

  2. Krogh KA, Wydeven N, Wickman K, Thayer SA (2014) HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca concentration via activation of Src kinase and nitric oxide signaling pathways. J Neurochem 130:642–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. McLeod JR Jr, Shen M, Kim DJ, Thayer SA (1998) Neurotoxicity mediated by aberrant patterns of synaptic activity between rat hippocampal neurons in culture. J Neurophysiol 80:2688–2698

    CAS  PubMed  Google Scholar 

  4. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  5. Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318:558–561

    Article  CAS  PubMed  Google Scholar 

  6. Almers W, Neher E (1985) The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett 192:13–18

    Article  CAS  PubMed  Google Scholar 

  7. Wier WG, Cannell MB, Berlin JR, Marban E, Lederer WJ (1987) Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. Science 235

    Google Scholar 

  8. Hirning LD et al (1988) Dominant role of N-type Ca2+ Channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–60

    Article  CAS  PubMed  Google Scholar 

  9. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bolsover S, Ibrahim O, O’Luanaigh N, Williams H, Cockcroft S (2001) Use of fluorescent Ca2+ dyes with green fluorescent protein and its variants: problems and solutions. Biochem J 356:345–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  12. Tian L, Akerboom J, Schreiter ER, Looger LL (2012) Neural activity imaging with genetically encoded calcium indicators. Prog Brain Res 196:79–94

    Article  CAS  PubMed  Google Scholar 

  13. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3, e1796

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13:759–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kuchibhotla KV et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59:214–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jia H, Rochefort NL, Chen X, Konnerth A (2011) In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat Protoc 6:28–35

    Article  CAS  PubMed  Google Scholar 

  18. Malgaroli A, Milani D, Meldolesi J, Pozzan T (1987) Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J Cell Biol 105:2145–2155

    Article  CAS  PubMed  Google Scholar 

  19. Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679

    Article  CAS  PubMed  Google Scholar 

  20. Sugimori M, Lang EJ, Silver RB, Llinas R (1994) High-resolution measurement of the time course of calcium-concentration microdomains at squid presynaptic terminals. Biol Bull 187:300–303

    Article  CAS  PubMed  Google Scholar 

  21. Martens MA, Boesmans W, Vanden Berghe P (2014) Calcium imaging at kHz frame rates resolves millisecond timing in neuronal circuits and varicosities. Biomed Opt Express 5:2648–2661

    Article  PubMed Central  PubMed  Google Scholar 

  22. Krogh KA, Lyddon E, Thayer SA (2015) HIV-1 Tat activates a RhoA signaling pathway to reduce NMDA-evoked calcium responses in hippocampal neurons via an actin-dependent mechanism. J Neurochem 132(3):354–366. doi:10.1111/jnc.12936

    Article  CAS  PubMed  Google Scholar 

  23. Thayer SA, Sturek M, Miller RJ (1988) Measurement of neuronal Ca2+ transients using simultaneous microfluorimetry and electrophysiology. Pflugers Arch 412:216–223

    CAS  PubMed  Google Scholar 

  24. Tsien R (1999) Calcium as a cellular regulator monitoring cell calcium. In: Carafoli E, Klee C (eds) Calcium as a cellular regulator. Oxford University Press, New York, pp 28–54

    Google Scholar 

  25. Li Y, Krogh KA, Thayer SA (2012) Epileptic stimulus increases Homer 1a expression to modulate endocannabinoid signaling in cultured hippocampal neurons. Neuropharmacology 63:1140–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant DA07304 from the National Institute on Drug Abuse to SAT. Dr. Krogh was supported by NIDA training grant DA007097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Krogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krogh, K.A., Thayer, S.A. (2016). Calcium Imaging to Study NMDA Receptor-mediated Cellular Responses. In: Popescu, G. (eds) Ionotropic Glutamate Receptor Technologies. Neuromethods, vol 106. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2812-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2812-5_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2811-8

  • Online ISBN: 978-1-4939-2812-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics