Skip to main content

Development of γδ T Cells, the Special-Force Soldiers of the Immune System

  • Protocol
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1323))

Abstract

While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated by αβ T cells. Accordingly, it is essential to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will cover the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  CAS  PubMed  Google Scholar 

  2. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  CAS  PubMed  Google Scholar 

  3. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13:88–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sheridan BS, Romagnoli PA, Pham QM et al (2013) gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39:184–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. King DP, Hyde DM, Jackson KA et al (1999) Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes. J Immunol 162:5033–5036

    CAS  PubMed  Google Scholar 

  6. Ramsburg E, Tigelaar R, Craft J et al (2003) Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198:1403–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Girardi M, Oppenheim DE, Steele CR et al (2001) Regulation of cutaneous malignancy by {gamma}{delta} T cells. Science 20:20

    Google Scholar 

  8. Chen Y, Chou K, Fuchs E et al (2002) Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A 99:14338–14343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sharp LL, Jameson JM, Cauvi G et al (2005) Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6:73–79

    Article  CAS  PubMed  Google Scholar 

  10. Nedellec S, Bonneville M, Scotet E (2010) Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 22:199–206

    Article  CAS  PubMed  Google Scholar 

  11. Meraviglia S, Eberl M, Vermijlen D et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Cai Y, Fleming C, Yan J (2012) New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol 9:302–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu P, Wu D, Ni C et al (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40:785–800

    Article  CAS  PubMed  Google Scholar 

  14. Born WK, Kemal Aydintug M, O’Brien RL (2013) Diversity of gammadelta T-cell antigens. Cell Mol Immunol 10:13–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rock EP, Sibbald PR, Davis MM et al (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328

    Article  CAS  PubMed  Google Scholar 

  16. Lauritsen JP, Haks MC, Lefebvre JM et al (2006) Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 209:176–190

    Article  PubMed  Google Scholar 

  17. Xiong N, Raulet DH (2007) Development and selection of gammadelta T cells. Immunol Rev 215:15–31

    Article  CAS  PubMed  Google Scholar 

  18. Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien RL, Born WK (2010) gammadelta T cell subsets: a link between TCR and function? Semin Immunol 22:193–198

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jin Y, Xia M, Saylor CM et al (2010) Cutting edge: intrinsic programming of thymic gammadeltaT cells for specific peripheral tissue localization. J Immunol 185:7156–7160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee SY, Stadanlick J, Kappes DJ et al (2010) Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 22:237–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lewis JM, Girardi M, Roberts SJ et al (2006) Selection of the cutaneous intraepithelial gammadelta + T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850

    Article  CAS  PubMed  Google Scholar 

  23. Pereira P, Zijlstra M, McMaster J et al (1992) Blockade of transgenic gamma delta T cell development in beta 2-microglobulin deficient mice. EMBO J 11:25–31

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Coffey F, Lee SY, Buus TB et al (2014) The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment and a metastable intermediate in effector specification. J Exp Med 211:329–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ribot JC, deBarros A, Pang DJ et al (2009) CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10:427–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kreslavsky T, Garbe AI, Krueger A et al (2008) T cell receptor-instructed alphabeta versus gammadelta lineage commitment revealed by single-cell analysis. J Exp Med 205:1173–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pennington DJ, Silva-Santos B, Shires J et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998

    Article  CAS  PubMed  Google Scholar 

  28. Melichar HJ, Narayan K, Der SD et al (2007) Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 315:230–233

    Article  CAS  PubMed  Google Scholar 

  29. Roberts NA, White AJ, Jenkinson WE et al (2012) Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36:427–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Silva-Santos B, Pennington DJ, Hayday AC (2005) Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307:925–928

    Article  CAS  PubMed  Google Scholar 

  31. Petrie HT, Scollay R, Shortman K (1992) Commitment to the T cell receptor-alpha beta or -gamma delta lineages can occur just prior to the onset of CD4 and CD8 expression among immature thymocytes. Eur J Immunol 22:2185–2188

    Article  CAS  PubMed  Google Scholar 

  32. Ciofani M, Knowles GC, Wiest DL et al (2006) Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 25:105–116

    Article  CAS  PubMed  Google Scholar 

  33. Narayan K, Kang J (2010) Disorderly conduct in gammadelta versus alphabeta T cell lineage commitment. Semin Immunol 22:222–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wong GW, Zuniga-Pflucker JC (2010) gammadelta and alphabeta T cell lineage choice: resolution by a stronger sense of being. Semin Immunol 22:228–236

    Article  CAS  PubMed  Google Scholar 

  35. Hayes SM, Love PE (2006) Strength of signal: a fundamental mechanism for cell fate specification. Immunol Rev 209:170–175

    Article  PubMed  Google Scholar 

  36. Hayes SM, Li L, Love PE (2005) TCR signal strength influences alphabeta/gammadelta lineage fate. Immunity 22:583–593

    Article  CAS  PubMed  Google Scholar 

  37. Haks MC, Lefebvre JM, Lauritsen JP et al (2005) Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 22:595–606

    Article  CAS  PubMed  Google Scholar 

  38. Kreslavsky T, von Boehmer H (2010) gammadeltaTCR ligands and lineage commitment. Semin Immunol 22:214–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Meyer C, Zeng X, Chien YH (2010) Ligand recognition during thymic development and gammadelta T cell function specification. Semin Immunol 22:207–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Havran WL, Allison JP (1988) Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335: 443–445

    Article  CAS  PubMed  Google Scholar 

  41. Boyden LM, Lewis JM, Barbee SD et al (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40:656–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lauritsen JP, Wong GW, Lee SY et al (2009) Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent. Immunity 31:565–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Prinz I, Silva-Santos B, Pennington DJ (2013) Functional development of gammadelta T cells. Eur J Immunol 43:1988–1994

    Article  CAS  PubMed  Google Scholar 

  44. Turchinovich G, Hayday AC (2011) Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells. Immunity 35:59–68

    Article  CAS  PubMed  Google Scholar 

  45. Narayan K, Sylvia KE, Malhotra N et al (2012) Intrathymic programming of effector fates in three molecularly distinct gammadelta T cell subtypes. Nat Immunol 13:511–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jensen KD, Su X, Shin S et al (2008) Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29:90–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wencker M, Turchinovich G, Di Marco BR et al (2014) Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat Immunol 15:80–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Wiest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wiest, D.L. (2016). Development of γδ T Cells, the Special-Force Soldiers of the Immune System. In: Bosselut, R., S. Vacchio, M. (eds) T-Cell Development. Methods in Molecular Biology, vol 1323. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2809-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2809-5_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2808-8

  • Online ISBN: 978-1-4939-2809-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics