Skip to main content

Prediction of Cell-Penetrating Peptides

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

The in silico methods for the prediction of the cell-penetrating peptides are reviewed. Those include the multivariate statistical methods, machine-learning methods such as the artificial neural networks and support vector machines, and molecular modeling techniques including molecular docking and molecular dynamics.

The applicability of the methods is demonstrated on the basis of the exemplary cases from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine IN (2008) Quantum chemistry, 6th edn. Prentice Hall, New York, NY

    Google Scholar 

  2. Sabin JR, Brändas E (2010) Combining quantum mechanics and molecular mechanics. Some recent progresses in QM/MM methods. Adv Quant Chem 59:1–416

    Article  Google Scholar 

  3. Stalmans S, Wynendaele E, Bracke N et al (2013) Chemical-functional diversity in cell-penetrating peptides. PLoS One 8:e71752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Todeschini R, Consonni V (2000) Molecular descriptors for chemoinformatics, 2 vols. Wiley-VCH, New York, NY

    Google Scholar 

  5. Karelson M (2000) Molecular descriptors in QSAR/QSPR. J. Wiley & Sons, New York, NY

    Google Scholar 

  6. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 9:1027–1043

    Article  Google Scholar 

  7. Karelson M (2004) Quantum-chemical descriptors in QSAR. In: Bultinck P et al (eds) Computational medicinal chemistry and drug discovery. Dekker Inc., New York, NY, pp 641–668

    Google Scholar 

  8. Hellberg S, Sjöström M, Skagerberg B et al (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  CAS  PubMed  Google Scholar 

  9. Sandberg M, Eriksson L, Jonsson J et al (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491

    Article  CAS  PubMed  Google Scholar 

  10. He R, Ma H, Zhao W et al (2012) Modeling the QSAR of ACE-inhibitory peptides with ANN and its applied illustration. Int J Pept 2012:620609

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhou P, Chen X, Wu Y et al (2010) Gaussian process: an alternative approach for QSAM modeling of peptides. Amino Acids 38:199–212

    Article  CAS  PubMed  Google Scholar 

  12. Prusis P, Lundstedt T, Wikberg JE (2002) Proteo-chemometrics analysis of MSH peptide binding to melanocortin receptors. Protein Eng 15:305–311

    Article  CAS  PubMed  Google Scholar 

  13. Prusis P, Uhlén S, Petrovska R et al (2006) Prediction of indirect interactions in proteins. BMC Bioinform 22:167

    Article  Google Scholar 

  14. Mandrika I, Prusis P, Yahorava S et al (2007) Proteochemometric modelling of antibody-antigen interactions using SPOT synthesised peptide arrays. Protein Eng Des Select 20:301–307

    Article  CAS  Google Scholar 

  15. Hällbrink M, Kilk K, Elmquist A et al (2005) Prediction of cell-penetrating peptides. Int J Pept Res Ther 11:249–259

    Article  Google Scholar 

  16. Yang L, Shu M, Ma K et al (2010) ST-scale as a novel amino acid descriptor and its application in QSAM of peptides and analogues. Amino Acids 38:805–816

    Article  CAS  PubMed  Google Scholar 

  17. Mauri A, Ballabio D, Consonni V et al (2008) Peptides multivariate characterisation using a molecular descriptor based approach. MATCH Commun Math Comput Chem 60:671–690

    CAS  Google Scholar 

  18. van Westen GJP, Swier RF, Wegner JK et al (2013) Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets. J Cheminform 5:41

    Article  PubMed Central  PubMed  Google Scholar 

  19. van Westen GJP, Swier RF, Cortes-Ciriano I et al (2013) Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J Cheminform 5:42

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gautam A, Chaudhary K, Kumar R et al (2013) Open source drug discovery consortium and in silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11:74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Futaki S (2006) Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Biopolymers 84:241–249

    Article  CAS  PubMed  Google Scholar 

  22. Katritzky AR, Mu L, Lobanov VS, Karelson M (1996) Correlation of boiling points with molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple inorganics. J Phys Chem 100:10400–10407

    Article  CAS  Google Scholar 

  23. Regberg J, Srimanee A, Erlandsson M et al (2014) Rational design of a series of novel amphipathic cell-penetrating peptides. Int J Pharm 464:111–116

    Article  CAS  PubMed  Google Scholar 

  24. Dobchev DA, Karelson M (2011) Using artificial neural networks to predict cell-penetrating compounds. Exp Opin Drug Discov 6:783–796

    Article  Google Scholar 

  25. Dobchev DA, Pillai GG, Karelson M (2014) In silico machine learning methods in drug development. Curr Top Med Chem 14:1913–1922

    Article  CAS  PubMed  Google Scholar 

  26. Dobchev DA, Mäger I, Tulp I et al (2010) Prediction of cell-penetrating peptides using artificial neural networks. Curr Comput Aid Drug Des 6:79–89

    Article  CAS  Google Scholar 

  27. Holton TA, Pollastri G, Shields DC et al (2013) CPPpred: prediction of cell penetrating peptides. Bioinformatics 29:3094–3096

    Article  CAS  PubMed  Google Scholar 

  28. http://bioware.ucd.ie/cpppred

  29. Vapnik V (1992) Principles of risk minimization for learning theory. In: Moody JE, Hanson SJ, Lippmann RP (eds) Advances in neural information processing systems, vol 4. Morgan Kaufmann, Burlington, MA

    Google Scholar 

  30. Sanders WS, Johnston CI, Bridges SM et al (2011) Prediction of cell penetrating peptides by support vector machines. PLoS Comput Biol 7:e1002101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ustun B, Melssen W, Buydens L (2005) Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemom Intell Lab Syst 81:29–40

    Article  Google Scholar 

  32. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20:760–784

    Article  CAS  PubMed  Google Scholar 

  33. AutoDock4.2.6, The Scripps Institute, 2014.

    Google Scholar 

  34. (2014) Small-Molecule Drug Discovery Suite 2014-4: Glide, version 6.5, New York, NY: Schrödinger, LLC

    Google Scholar 

  35. Baumgärtner P, Geiger M, Zieseniss S et al (2007) Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. J Cell Biol 179:793–804

    Article  PubMed Central  PubMed  Google Scholar 

  36. Flores KA, Salgado JC, Zapata-Torres G et al (2012) Effect of the electrostatic potential on the internalization mechanism of cell penetrating peptides derived from TIRAP. Biotech Bioproc Eng 17:485–499

    Article  CAS  Google Scholar 

  37. García-Sosa AT, Tulp I, Langel K, Langel Ü (2014) Peptide-ligand binding modeling of siRNA with cell-penetrating peptides. BioMed Res Int 2014:257040

    Article  PubMed Central  PubMed  Google Scholar 

  38. Allen MP (2004) Introduction to molecular dynamics simulation. NIC Ser 23:1–28

    Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  40. MacKerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  41. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  42. Säälik P, Niinep A, Pae J et al (2011) Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. J Control Rel 153:117–125

    Article  Google Scholar 

  43. Hu Y, Liu X, Sinha SK, Sandeep P (2014) Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. J Phys Chem B 118:2670–2682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hu Y, Sinha SK, Sandeep P (2014) Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. J Phys Chem B 118:11973–11992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mati Karelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hällbrink, M., Karelson, M. (2015). Prediction of Cell-Penetrating Peptides. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics