Skip to main content

Intracellular Delivery of Nanoparticles with Cell Penetrating Peptides

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

The functionalization of nanoparticles (NPs) with cell penetrating peptides (CPPs) constitutes a breakthrough for the intracellular delivery of therapeutic and diagnostic payloads. In late 1998, a significant cellular uptake of a small protein from the HIV-1 virus, namely TAT peptide (TATp), was observed. Thereafter, research began on design of similarly acting peptides, and the coupling of NPs with these novel CPPs. Here, we describe recent methods used to modify the surface of NPs with CPPs and the in vitro and in vivo effects of such functionalization on the intracellular delivery of various cargos. In particular, we highlight recent advances aimed at reducing the non-selectivity of CPPs and the prevention of their enzymatic cleavage en route to target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  2. Derossi D, Joliot AH, Chassaing G et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  3. Futaki S, Suzuki T, Ohashi W et al (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  PubMed  Google Scholar 

  4. Pooga M, Hällbrink M, Zorko M et al (1998) Cell penetration by transportan. FASEB J 12:67–77

    CAS  PubMed  Google Scholar 

  5. Schwarze SR, Ho A, Vocero-Akbani A et al (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  6. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Jiang Y, Wang H et al (2013) Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65:1299–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Choi YS, David AE (2014) Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol 15:192–199

    Article  CAS  PubMed  Google Scholar 

  9. Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  CAS  PubMed  Google Scholar 

  10. Wunderbaldinger P, Josephson L, Weissleder R (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13:264–268

    Article  CAS  PubMed  Google Scholar 

  11. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  12. Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276

    Article  CAS  PubMed  Google Scholar 

  13. Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  14. Maeda H, Bharate GY, Daruwalla J (2008) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  PubMed  Google Scholar 

  15. Torchilin VP, Rammohan R, Weissig V et al (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98:8786–8791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Pappalardo JS, Langellotti CA, Di Giacomo S et al (2014) In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes. Int J Nanomedicine 9:963–973

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lukyanov AN, Gao Z, Mazzola L et al (2002) Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm Res 19:1424–1429

    Article  CAS  PubMed  Google Scholar 

  18. Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94:187–193

    Article  CAS  PubMed  Google Scholar 

  19. Sawant RR, Torchilin VP (2009) Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo. Int J Pharm 374:114–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118:216–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sawant RR, Sawant RM, Kale AA et al (2008) The architecture of ligand attachment to nanocarriers controls their specific interaction with target cells. J Drug Target 16:596–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Koren E, Apte A, Sawant RR et al (2011) Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv 18:377–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Koren E, Apte A, Jani A et al (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160:264–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Apte A, Koren E, Koshkaryev A, Torchilin VP (2014) Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 15:69–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ishida T, Iden D, Allen TM (1999) A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 460:29–133

    Article  Google Scholar 

  27. Zhu L, Wang T, Perche F et al (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 110:17047–17052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. William C. Hartner for the help in the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salzano, G., Torchilin, V.P. (2015). Intracellular Delivery of Nanoparticles with Cell Penetrating Peptides. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics