Skip to main content

Cell-Penetrating Peptides as Carriers for Transepithelial Drug Delivery In Vitro

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

There is a growing interest in the use of cell-penetrating peptides (CPPs) as carriers for transepithelial drug delivery. This chapter gives an introduction to and discussion of the commonly used production and characterization methods for CPP–cargo samples including high-throughput cell viability screening. Moreover, we describe methods for permeation and cell viability assessment in the Caco-2 cell culture model with and without implementation of biosimilar mucus. Last, a method to assess metabolic degradation in vitro is described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stewart KM, Horton KL, Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6:2242–2255

    Article  CAS  PubMed  Google Scholar 

  2. Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hällbrink M, Langel U (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71:416–425

    Article  CAS  PubMed  Google Scholar 

  3. Margus H, Padari K, Pooga M (2012) Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20:525–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19:1173–1176

    Article  CAS  PubMed  Google Scholar 

  5. Khafagy E-S, Kamei N, Nielsen EJB, Nishio R, Takeda-Morishita M (2013) One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats. Eur J Pharm Biopharm 85:736–743

    Article  CAS  Google Scholar 

  6. Khafagy E-S, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64:531–539

    Article  CAS  Google Scholar 

  7. Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K (2008) Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release 132:21–25

    Article  CAS  PubMed  Google Scholar 

  8. Liang JF, Yang VC (2005) Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun 335:734–738

    Article  CAS  PubMed  Google Scholar 

  9. Artursson P, Palm K, Luthman K (1996) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 22:67–84

    Article  CAS  Google Scholar 

  10. Boegh M, Baldursdóttir SG, Müllertz A, Nielsen HM (2014) Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur J Pharm Biopharm 87:227–235

    Article  CAS  PubMed  Google Scholar 

  11. Boegh M, Baldursdottir SG, Nielsen MH, Müllertz A, Nielsen HM (2013) Development and rheological profiling of biosimilar mucus. Annu Trans Nord Rheol Soc 21:233–240

    CAS  Google Scholar 

  12. Hilgendorf C, Spahn-Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P (2000) Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75

    Article  CAS  PubMed  Google Scholar 

  13. Hämäläinen MD, Frostell-Karlsson A (2004) Predicting the intestinal absorption potential of hits and leads. Drug Discov Today Technol 1:397–405

    Article  PubMed  Google Scholar 

  14. Antunes F, Andrade F, Ferreira D, Nielsen HM, Sarmento B (2013) Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab 14:4–20

    Article  CAS  PubMed  Google Scholar 

  15. Irvine JD, Takahashi L, Lockhardt K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin − Darby Canine Kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33

    Article  CAS  PubMed  Google Scholar 

  16. Forbes B (2000) Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 3:18–27

    Article  CAS  PubMed  Google Scholar 

  17. Rupniak T, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, Laskiewicz B, Povey S, Hill BT (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75:621–635

    CAS  PubMed  Google Scholar 

  18. Prueksaritanont T, Gorham LM, Hochman JH, Tran LO, Vyas KP (1996) Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos 24:634–642

    CAS  PubMed  Google Scholar 

  19. Elmquist A, Langel U (2003) In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem 384:387–393

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen EJB, Yoshida S, Kamei N, Iwamae R, Khafagy e-S, Olsen J, Rahbek UL, Pedersen BL, Takayama K, Takeda-Morishita M (2014) In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Control Release 189:19–24

    Article  CAS  PubMed  Google Scholar 

  21. Rennert R, Wespe C, Beck-Sickinger AG, Neundorf I (2006) Developing novel hCT derived cell-penetrating peptides with improved metabolic stability. Biochim Biophys Acta 1758:347–354

    Article  CAS  PubMed  Google Scholar 

  22. Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Pantzar N, Lundin S, Wester L, Weström BR (1994) Bidirectional small-intestine permeability in the rat to some common marker molecules in vitro. Scan J Gastroenterol 8:703–709

    Article  Google Scholar 

  24. Kristensen M, Foged C, Berthelsen J, Nielsen HM (2013) Peptide-enhanced oral delivery of therapeutic peptides and proteins. J Drug Del Sci Tech 23:365–373

    Article  CAS  Google Scholar 

  25. Kasimova MR, Velázquez-Campoy A, Nielsen HM (2011) On the temperature dependence of complex formation between chitosan and proteins. Biomacromolecules 12:2534–2543

    Article  CAS  PubMed  Google Scholar 

  26. Eirheim HU, Bundgaard C, Nielsen HM (2004) Evaluation of different toxicity assays applied to proliferating cells and to stratified epithelium in relation to permeability enhancement with glycocholate. Toxicil In Vitro 18:649–657

    Article  CAS  Google Scholar 

  27. Zhu X, Shan W, Zhang P, Jin Y, Guan S, Fan T, Yang Y, Zhou Z, Huang Y (2014) Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol Pharm 11:317–328

    Article  CAS  PubMed  Google Scholar 

  28. Tréhin R, Nielsen HM, Jahnke H-G, Krauss U, Beck-Sickinger AG, Merkle HP (2004) Metabolic cleavage of cell-penetrating peptides in contact with epithelial models: human calcitonin (hCT)-derived peptides, Tat(47-57) and penetratin(43-58). Biochem J 382:945–956

    Article  PubMed Central  PubMed  Google Scholar 

  29. Navabi N, McGuckin MA, Lindén SK (2013) Gastrointestinal cell lines form polarized epithelia with and adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 8:e68761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tippin TK, Thakker DR (2008) Biorelevant refinement of the Caco-2 cell culture model to assess efficacy of paracellular permeability enhancers. J Pharm Sci 97:1977–1993

    Article  CAS  PubMed  Google Scholar 

  31. Briske-Anderson MJ, Finley JW, Newman SM (1997) The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proc Soc for Exp Biol Med 214:248–257

    Article  CAS  Google Scholar 

  32. Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, Kobayashi S, Haraguchi T, Futaki S (2012) Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther 20:1–10

    Article  Google Scholar 

Download references

Acknowledgements

María García-Díaz is acknowledged for supplying the protocols for the mucus preparation and the permeation study using Caco-2 cell monolayers supplemented with biosimilar mucus. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115363 resources which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. Additionally, the work was financially supported by the Drug Research Academy (University of Copenhagen), The Danish Agency for Science, Technology & Innovation, and the Novo Nordisk Foundation Center for Protein Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Mørck Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rønholt, S., Kristensen, M., Nielsen, H.M. (2015). Cell-Penetrating Peptides as Carriers for Transepithelial Drug Delivery In Vitro. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics