Skip to main content

SCARA Involvement in the Uptake of Nanoparticles Formed by Cell-Penetrating Peptides

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

The investigation of uptake mechanisms for cell-penetrating peptides (CPPs) is and has been an ongoing project for as long as the peptides have been known, a time period that now spans over two decades. The ultimate answer is yet to be revealed and the current understanding is that no “one” mechanism will ever be found. The reason for this is that the uptake mechanism seems to be dependent on a multitude of factors that include which CPP, what cells are used, whether or not there is cargo and what the cargo is. CPPs are capable of delivering a variety of bio-macromolecules that are by themselves unable to enter into cells. Our group has reported on many different peptides in recent years, many aimed at delivering various oligonucleotide-based cargoes. These peptides have utilized the inherent positive charge of the peptides and some rationally designed modifications to non-covalently complex oligonucleotides and bring them into cells. In this chapter, we present a brief overview of the current proposals for the uptake mechanisms of CPPs and describe methods for detecting and evaluating the role of scavenger receptor class A receptors in the uptake of non-covalent cell-penetrating peptide:oligonucleotide complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veiman K-L, Mäger I, Ezzat K et al (2013) PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol Pharm 10:199–210

    Article  CAS  PubMed  Google Scholar 

  2. El Andaloussi S, Lehto T, Mäger I et al (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987

    Article  PubMed Central  CAS  Google Scholar 

  3. Ezzat K, El Andaloussi S, Zaghloul EM et al (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39:5284–5298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lindberg S, Muñoz-Alarcón A, Helmfors H et al (2013) PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. Int J Pharm 441:242–247

    Article  CAS  PubMed  Google Scholar 

  5. Myrberg HH, Lindgren M, Langel Ü (2006) Protein delivery by the cell-penetrating peptide YTA2. Bioconjug Chem 18:170–174

    Article  Google Scholar 

  6. Jones SW, Christison R, Bundell K et al (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145:1093–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. El Andaloussi S, Johansson H, Holm T et al (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15:1820–1826

    Article  CAS  PubMed  Google Scholar 

  8. Gautam A, Singh H, Tyagi A et al (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:bas015

    Article  PubMed Central  PubMed  Google Scholar 

  9. Richard JP, Melikov K, Vivès E et al (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  CAS  PubMed  Google Scholar 

  10. Tyagi M, Rusnati M, Presta M et al (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  CAS  PubMed  Google Scholar 

  11. Subrizi A, Tuominen E, Bunker A et al (2011) Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 158(2):277–285

    Article  PubMed  Google Scholar 

  12. Nakase I, Tadokoro A, Kawabata N et al (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46:492–501

    Article  CAS  PubMed  Google Scholar 

  13. Lundin P, Johansson H, Guterstam P et al (2008) Distinct uptake routes of cell-penetrating peptide conjugates. Bioconjug Chem 19:2535–2542

    Article  CAS  PubMed  Google Scholar 

  14. Verdurmen WPR, Wallbrecher R, Schmidt S et al (2013) Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J Control Release 170:83–91

    Article  CAS  PubMed  Google Scholar 

  15. Fittipaldi A, Ferrari A, Zoppé M et al (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278:34141–34149

    Article  CAS  PubMed  Google Scholar 

  16. Richard JP, Melikov K, Brooks H et al (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  CAS  PubMed  Google Scholar 

  17. Duchardt F, Fotin-Mleczek M, Schwarz H et al (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  CAS  PubMed  Google Scholar 

  18. Mishra A, Lai GH, Schmidt NW et al (2011) Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci U S A 108:16883–16888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rothbard JB, Jessop TC, Lewis RS et al (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–9507

    Article  CAS  PubMed  Google Scholar 

  20. Wender PA, Galliher WC, Goun EA et al (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mishra A, Gordon VD, Yang L et al (2008) HIV TAT forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew Chem Int Ed Engl 47:2986–2989

    Article  CAS  PubMed  Google Scholar 

  22. Verdurmen WPR, Thanos M, Ruttekolk IR et al (2010) Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake. J Control Release 147:171–179

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka G, Nakase I, Fukuda Y et al (2012) CXCR4 stimulates macropinocytosis: implications for cellular uptake of arginine-rich cell-penetrating peptides and HIV. Chem Biol 19:1437–1446

    Article  CAS  PubMed  Google Scholar 

  24. Teesalu T, Sugahara KN, Kotamraju VR et al (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci U S A 106:16157–16162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Arukuusk P, Pärnaste L, Margus H et al (2013) Differential endosomal pathways for radically modified peptide vectors. Bioconjug Chem 24:1721–1732

    Article  CAS  PubMed  Google Scholar 

  26. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  27. Greaves DR, Gordon S (2009) The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res 50(Suppl):S282–S286

    PubMed Central  PubMed  Google Scholar 

  28. Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64:25–32

    CAS  PubMed  Google Scholar 

  29. Dunne DW, Resnick D, Greenberg J et al (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91:1863–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kouadir M, Yang L, Tan R et al (2012) CD36 participates in PrP(106-126)-induced activation of microglia. PLoS One 7, e30756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. DeWitte-Orr SJ, Collins SE, Bauer CMT et al (2010) An accessory to the “Trinity”: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog 6, e1000829

    Article  PubMed Central  PubMed  Google Scholar 

  32. Barth H, Schnober EK, Neumann-Haefelin C et al (2008) Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol 82:3466–3479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Wu L, Reinhard BM (2012) Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous. ACS Nano 6:7122–7132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Krieger M (1997) The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 8:275–280

    Article  CAS  PubMed  Google Scholar 

  36. Sarrias MR, Grønlund J, Padilla O et al (2004) The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 24:1–37

    Article  CAS  PubMed  Google Scholar 

  37. Santiago-Garcı́́a J, Kodama T, Pitas RE (2003) The class A scavenger receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix. J Biol Chem 278:6942–6946

    Article  PubMed  Google Scholar 

  38. Arukuusk P, Pärnaste L, Oskolkov N et al (2013) New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta 1828:1–9

    Article  Google Scholar 

  39. Ezzat K, Helmfors H, Tudoran O et al (2012) Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J 26:1172–1180

    Article  CAS  PubMed  Google Scholar 

  40. Lindberg S, Regberg J, Eriksson J, Helmfors H, Muñoz-Alarcón A, Srimanee A, et al (2015) A convergent uptake route for peptide- and polymer-based nucleotide delivery systems, J Control Release. doi:10.1016/j.jconrel.2015.03.009

  41. Langel Ü (2011) Cell-penetrating peptides: methods and protocols. Springer, New York

    Book  Google Scholar 

  42. Kang SH, Cho MJ, Kole R (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235–6239

    Article  CAS  PubMed  Google Scholar 

  43. Andaloussi SEL, Guterstam P, Langel Ü (2007) Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nat Protoc 2:2043–2047

    Article  PubMed  Google Scholar 

  44. Jafferali MH, Vijayaraghavan B, Figueroa RA et al (2014) MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. Biochim Biophys Acta 1838:2399–2403

    Article  CAS  PubMed  Google Scholar 

  45. Buch C, Lindberg R, Figueroa R et al (2009) An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci 122:2100–2107

    Article  CAS  PubMed  Google Scholar 

  46. Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95:2157–2163

    CAS  PubMed  Google Scholar 

  48. Suzuki K, Doi T, Imanishi T et al (1999) Oligonucleotide aggregates bind to the macrophage scavenger receptor. Eur J Biochem 260:855–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Helmfors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Helmfors, H., Lindberg, S., Langel, Ü. (2015). SCARA Involvement in the Uptake of Nanoparticles Formed by Cell-Penetrating Peptides. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics