Skip to main content

Computational Data Integration in Toxicogenomics

  • Protocol
Computational Systems Toxicology

Abstract

Toxicogenomics is an emerging field defined by the adaptation and application of functional genomics techniques to toxicology. Recent advances in generating and analyzing multi-omics data have facilitated the development of toxicogenomics to provide novel answers to many toxicology-related questions. In this chapter, we discuss five recent toxicogenomics studies presenting complementary strategies for mining genome-wide molecular profiling data after exposure of cells to chemicals in vitro. The case studies cover various areas of systems toxicology and pharmacogenomics and illustrate the rapid evolution of toxicogenomics, including computational methods for the analysis, integration, and interpretation of omics data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nigsch F, Macaluso NM, Mitchell JB, Zmuidinavicius D (2009) Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opin Drug Metab Toxicol 5(1):1–14

    Article  CAS  PubMed  Google Scholar 

  2. Nuwaysir EF, Bittner M, Trent J et al (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24(3):153–159

    Article  CAS  PubMed  Google Scholar 

  3. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5(12):936–948

    Article  CAS  PubMed  Google Scholar 

  4. Gatzidou ET, Zira AN, Theocharis SE (2007) Toxicogenomics: a pivotal piece in the puzzle of toxicological research. J Appl Toxicol 27(4):302–309

    Article  CAS  PubMed  Google Scholar 

  5. Sturla SJ, Boobis AR, FitzGerald RE et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27(3):314–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ferté C, André F, Soria J-C (2010) Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7(7):367–380

    Article  PubMed  Google Scholar 

  7. Macarron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195

    Article  CAS  PubMed  Google Scholar 

  8. Arrell D, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88(1):120–125

    Article  CAS  PubMed  Google Scholar 

  9. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31(1):2–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Constantinescu S, Hecht K, Sobotzki N et al (2014) Transcriptomic responses of cancerous and noncancerous human colon cells to sulforaphane and selenium. Chem Res Toxicol 27(3):377–386

    Article  CAS  PubMed  Google Scholar 

  11. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wilmes A, Limonciel A, Aschauer L et al (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79:180–194

    Article  CAS  PubMed  Google Scholar 

  13. Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024

    Article  CAS  PubMed  Google Scholar 

  15. Gehlenborg N, O'Donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Article  CAS  PubMed  Google Scholar 

  16. Pavlopoulos GA, O'Donoghue SI, Satagopam VP et al (2008) Arena3D: visualization of biological networks in 3D. BMC Syst Biol 2(1):104

    Article  PubMed Central  PubMed  Google Scholar 

  17. Theocharidis A, Van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using BioLayout Express3D. Nat Protoc 4(10):1535–1550

    Article  CAS  PubMed  Google Scholar 

  18. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7(1):109

    Article  PubMed Central  PubMed  Google Scholar 

  19. Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 1(5):159–162

    Article  Google Scholar 

  20. Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433

    Article  CAS  PubMed  Google Scholar 

  21. Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4(3):R22

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Longabaugh WJ, Davidson EH, Bolouri H (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789:363–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Letunic I, Yamada T, Kanehisa M, Bork P (2008) iPath: interactive exploration of biochemical pathways and networks. Trends Biochem Sci 33:101–103

    Article  CAS  PubMed  Google Scholar 

  26. Okuda S, Yamada T et al (2008) KEGG atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hu Z, Hung J-H, Wang Y et al (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Warde-Farley D, Donaldson SL et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl 2):W214–W220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  CAS  PubMed  Google Scholar 

  30. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41(8):4378–4391

    Article  PubMed Central  PubMed  Google Scholar 

  34. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  35. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  36. Beißbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465

    Article  PubMed  Google Scholar 

  37. Zheng Q, Wang X-J (2008) GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36(suppl 2):W358–W363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kong SW, Pu WT, Park PJ (2006) A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics 22(19):2373–2380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hummel M, Meister R, Mansmann U (2008) GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24(1):78–85

    Article  CAS  PubMed  Google Scholar 

  40. Tsai C-A, Chen JJ (2009) Multivariate analysis of variance test for gene set analysis. Bioinformatics 25(7):897–903

    Article  CAS  PubMed  Google Scholar 

  41. Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  CAS  PubMed  Google Scholar 

  42. Roig AI, Eskiocak U, Hight SK et al (2010) Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology 138(3):1012–1021

    Article  PubMed  Google Scholar 

  43. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3

    Google Scholar 

  44. Efron B, Tibshirani R (2007) On testing the significance of sets of genes. Ann Appl Stat 1(1):107–129

    Article  Google Scholar 

  45. Madan A, Dureja H (2012) Prediction of pharmacokinetic parameters. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 337–357

    Chapter  Google Scholar 

  46. Chien JY, Friedrich S, Heathman MA et al (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J 7(3):E544–E559

    Article  PubMed Central  PubMed  Google Scholar 

  47. Czock D, Markert C, Hartman B, Keller F (2009) Pharmacokinetics and pharmacodynamics of antimicrobial drugs. Expert Opin Drug Metab Toxicol 5(5):475–487

    Article  CAS  PubMed  Google Scholar 

  48. Bassingthwaighte JB, Butterworth E, Jardine B, Raymond GM (2012) Compartmental modeling in the analysis of biological systems computational toxicology. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 391–438

    Chapter  Google Scholar 

  49. Gabrielsson J, Weiner D (2012) Non-compartmental analysis. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 377–389

    Chapter  Google Scholar 

  50. Huisinga W, Telgmann R, Wulkow M (2006) The virtual laboratory approach to pharmacokinetics: design principles and concepts. Drug Discov Today 11(17):800–805

    Article  CAS  PubMed  Google Scholar 

  51. von Kleist M, Huisinga W (2007) Physiologically based pharmacokinetic modelling: a sub-compartmentalized model of tissue distribution. J Pharmacokinet Pharmacodyn 34(6):789–806

    Article  Google Scholar 

  52. Gillespie WR (1991) Noncompartmental versus compartmental modelling in clinical pharmacokinetics. Clin Pharmacokinet 20(4):253–262

    Article  CAS  PubMed  Google Scholar 

  53. Hamon J, Jennings P, Bois FY (2014) Systems biology modeling of omics data: effect of cyclosporine a on the Nrf2 pathway in human renal cells. BMC Syst Biol 8(1):76

    Article  PubMed Central  PubMed  Google Scholar 

  54. Emmel EA, Verweij CL et al (1989) Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246:1617–1620

    Article  CAS  PubMed  Google Scholar 

  55. Wieser M, Stadler G, Jennings P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295(5):F1365–F1375

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Pi J, Woods CG, Andersen ME (2009) Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses. Toxicol Appl Pharmacol 237(3):345–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5(4):262–275

    Article  CAS  PubMed  Google Scholar 

  58. Hatzis C, Bedard PL, Birkbak NJ et al (2014) Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res 74(15):4016–4023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Haibe-Kains B, El-Hachem N, Birkbak NJ et al (2013) Inconsistency in large pharmacogenomic studies. Nature 504(7480):389–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Malo N, Hanley JA, Cerquozzi S et al (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24(2):167–175

    Article  CAS  PubMed  Google Scholar 

  62. Lin WM, Baker AC, Beroukhim R et al (2008) Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68(3):664–673

    Article  CAS  PubMed  Google Scholar 

  63. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Solit DB, Garraway LA, Pratilas CA et al (2005) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sos ML, Michel K, Zander T et al (2009) Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. J Clin Invest 119(6):1727–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Staunton JE, Slonim DK, Coller HA et al (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 98(19):10787–10792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Beroukhim R, Mermel CH, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kohlmann A, Kipps TJ, Rassenti LZ et al (2008) An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: The Microarray Innovations in LEukemia study prephase. Br J Haematol 142(5):802–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Forbes S, Bhamra G, Bamford S et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10.11

    CAS  PubMed  Google Scholar 

  71. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67(2):301–320

    Article  Google Scholar 

  72. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267–288

    Google Scholar 

  73. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  Google Scholar 

  74. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  CAS  PubMed  Google Scholar 

  75. Larkin JE, Frank BC, Gavras H et al (2005) Independence and reproducibility across microarray platforms. Nat Methods 2(5):337–344

    Article  CAS  PubMed  Google Scholar 

  76. Jang IS, Neto EC, Guinney J et al (2013) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput 19:63–74

    Google Scholar 

  77. Jolliffe IT (1982) A note on the use of principal components in regression. Appl Stat 31:300–303

    Article  Google Scholar 

  78. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  79. Balabin RM, Lomakina EI (2011) Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136(8):1703–1712

    Article  CAS  PubMed  Google Scholar 

  80. Wu Y, Krishnan S (2011) Combining least-squares support vector machines for classification of biomedical signals: a case study with knee-joint vibroarthrographic signals. J Exp Theor Artif Intell 23(1):63–77

    Article  Google Scholar 

  81. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  82. Hilbe JM (2011) Negative binomial regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  83. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Druker BJ, Guilhot F, O'Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  CAS  PubMed  Google Scholar 

  85. King M-C, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643–646

    Article  CAS  PubMed  Google Scholar 

  86. Kwak EL, Bang Y-J, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. McDermott U, Sharma SV, Dowell L et al (2007) Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc Natl Acad Sci U S A 104(50):19936–19941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Wang Y, Waters J, Leung ML et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss National Science Foundation (Sinergia project 136247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Beerenwinkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Constantinescu, S., Sturla, S.J., Marra, G., Wollscheid, B., Beerenwinkel, N. (2015). Computational Data Integration in Toxicogenomics. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics