Skip to main content

Analysis of Proteomic Data for Toxicological Applications

  • Protocol
Computational Systems Toxicology

Abstract

Toward a comprehensive characterization of toxicant responses, systems toxicology requires the integration of different data modalities. Proteomics approaches measure changes in the levels of proteins and their posttranslational modifications, which can closely reflect the biological effects of a toxicant. With a focus on mass spectrometry-based proteomics, we describe the isobaric tag-based approach for quantitative proteomics (iTRAQ® and TMT) and describe computational approaches to derive biological/mechanistic insights. Specifically, we describe the generation and quantification of mass-spectrometry data and the identification of affected proteins, functional modules, and protein subnetworks. We illustrate these approaches using results from a 90-day rat inhalation toxicology study. Overall, we provide the foundation to employ quantitative proteomics within systems toxicology assessment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Titz B, Elamin A, Martin F et al (2014) Proteomics for systems toxicology. CSBJ 11(18):73–90

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rowlands JC, Sander M, Bus JS (2014) FutureTox: building the road for 21st century toxicology and risk assessment practices. Toxicol Sci 137(2):269–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. National Research Council. Committee on Toxicity T (2007) Assessment of environmental A. Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Pittsburgh, PA

    Google Scholar 

  4. Sturla SJ, Boobis AR, FitzGerald RE et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27(3):314–329. doi:10.1021/tx400410s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232. doi:10.1038/nrg3185

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237

    Article  CAS  PubMed  Google Scholar 

  7. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  Google Scholar 

  8. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210

    Article  CAS  Google Scholar 

  9. Runchel C, Matsuzawa A, Ichijo H (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 15(1):205–218

    Article  CAS  PubMed  Google Scholar 

  10. Merrick BA, Witzmann FA (2009) The role of toxicoproteomics in assessing organ specific toxicity. EXS 99:367–400

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105(47):18132–18138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709, doi:nbt.1658 [pii] 10.1038/nbt.1658

    Article  CAS  PubMed  Google Scholar 

  13. Yates JR III, Mohammed S, Heck AJ (2014) Phosphoproteomics. Anal Chem 86(3):1313

    Article  CAS  PubMed  Google Scholar 

  14. Wiese S, Reidegeld KA, Meyer HE et al (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3):340–350

    Article  CAS  PubMed  Google Scholar 

  15. Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57(7):1501–1508, doi:erj168 [pii] 10.1093/jxb/erj168

    Article  CAS  PubMed  Google Scholar 

  16. Kelstrup CD, Young C, Lavallee R et al (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11(6):3487–3497

    Article  CAS  PubMed  Google Scholar 

  17. Sturm M, Bertsch A, Gröpl C et al (2008) OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 9(1):163

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Röst HL, Schmitt U, Aebersold R et al (2014) pyOpenMS: a python‐based interface to the OpenMS mass‐spectrometry algorithm library. Proteomics 14(1):74–77

    Article  PubMed  CAS  Google Scholar 

  19. Berthold MR, Cebron N, Dill F et al (2008) KNIME: The Konstanz information miner. Springer, New York, NY

    Google Scholar 

  20. Team RC, Team RC (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  21. Nahnsen S, Bielow C, Reinert K et al (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12(3):549–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lemeer S, Hahne H, Pachl F et al (2012) Software tools for MS-based quantitative proteomics: a brief overview. Quantitative methods in proteomics. Springer, New York, NY, pp 489–499

    Google Scholar 

  23. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989, doi:10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  24. Cottrell JS, London U (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  Google Scholar 

  25. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  26. Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964

    Article  CAS  PubMed  Google Scholar 

  27. MacCoss MJ, Wu CC, Yates JR (2002) Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem 74(21):5593–5599

    Article  CAS  PubMed  Google Scholar 

  28. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  CAS  PubMed  Google Scholar 

  29. Käll L, Storey JD, MacCoss MJ et al (2007) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res 7(01):29–34

    Article  PubMed  CAS  Google Scholar 

  30. Spivak M, Weston J, Bottou L et al (2009) Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J Proteome Res 8(7):3737–3745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cappadona S, Baker PR, Cutillas PR et al (2012) Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 43(3):1087–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chawade A, Alexandersson E, Levander F (2014) Normalyzer: a tool for rapid evaluation of normalization methods for omics datasets. J Proteome Res 13(6):3114–3120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Huber W, Von Heydebreck A, Sültmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  34. Karp NA, Huber W, Sadowski PG et al (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sandberg A, Branca RM, Lehtio J et al (2013) Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference. J Proteomics 96C:133–144. doi:10.1016/j.jprot.2013.10.035

    Google Scholar 

  36. Savitski MM, Mathieson T, Zinn N et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12(8):3586–3598

    Article  CAS  PubMed  Google Scholar 

  37. Herbrich SM, Cole RN, West KP Jr et al (2013) Statistical inference from multiple iTRAQ experiments without using common reference standards. J Proteome Res 12(2):594–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ting L, Cowley MJ, Hoon SL et al (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 8(10):2227–2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):Article 3

    Google Scholar 

  40. Diz AP, Carvajal-Rodríguez A, Skibinski DO (2011) Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteomics 10(3):M110.004374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  42. Gillespie CS, Lei G, Boys RJ et al (2010) Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays. BMC Res Notes 3(1):81

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ravasz E, Somera AL, Mongru DA et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  CAS  PubMed  Google Scholar 

  44. Gavin A-C, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  CAS  PubMed  Google Scholar 

  45. Titz B, Low T, Komisopoulou E et al (2010) The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 29(44):5895–5910

    Article  CAS  PubMed  Google Scholar 

  46. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15. doi:10.1002/jcp.10119

    Article  CAS  PubMed  Google Scholar 

  47. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41(8):4378–4391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(D1):D199–D205. doi:10.1093/nar/gkt1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(D1):D472–D477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Consortium GO (2013) Gene ontology annotations and resources. Nucleic Acids Res 41(D1):D530–D535

    Article  CAS  Google Scholar 

  52. Culhane AC, Schröder MS, Sultana R et al (2012) GeneSigDB: a manually curated database and resource for analysis of gene expression signatures. Nucleic Acids Res 40(D1):D1060–D1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2), e1002375. doi:10.1371/journal.pcbi.1002375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Da Wei Huang BTS, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  57. Merico D, Isserlin R, Stueker O et al (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11), e13984

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Alexa A, Rahnenfuhrer J (2010) topGO: enrichment analysis for gene ontology. R package version 28

    Google Scholar 

  59. Ideker T, Ozier O, Schwikowski B et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  60. Mitra K, Carvunis A-R, Ramesh SK et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Iorio F, Saez-Rodriguez J, Di Bernardo D (2013) Network based elucidation of drug response: from modulators to targets. BMC Syst Biol 7(1):139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Vidal M, Cusick ME, Barabasi A-L (2011) Interactome networks and human disease. Cell 144(6):986–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815. doi:10.1093/nar/gks1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Croft D, O'Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697. doi:10.1093/nar/gkq1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11(5):R53. doi:10.1186/gb-2010-11-5-r53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437(7061):1032–1037

    Article  CAS  PubMed  Google Scholar 

  67. Racine J, Gerber V, Feutz MM et al (2011) Comparison of genomic and proteomic data in recurrent airway obstruction affected horses using ingenuity pathway analysis®. BMC Vet Res 7(1):48

    Article  PubMed Central  PubMed  Google Scholar 

  68. Go Y-M, Roede JR, Orr M et al (2014) Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd toxicity. Toxicol Sci 139(1):59–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hoeng J, Talikka M, Martin F et al (2013) Case study: the role of mechanistic network models in systems toxicology. Drug Discov Today 19(2):183–192

    Article  PubMed  CAS  Google Scholar 

  70. Schlage WK, Westra JW, Gebel S et al (2011) A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC Syst Biol 5(1):168

    Article  PubMed Central  PubMed  Google Scholar 

  71. Gebel S, Lichtner RB, Frushour B et al (2013) Construction of a computable network model for DNA damage, autophagy, cell death, and senescence. Bioinform Biol Insights 7:97

    PubMed Central  PubMed  Google Scholar 

  72. Westra JW, Schlage WK, Frushour BP et al (2011) Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC Syst Biol 5(1):105

    Article  PubMed Central  PubMed  Google Scholar 

  73. Westra JW, Schlage WK, Hengstermann A et al (2013) A modular cell-type focused inflammatory process network model for non-diseased pulmonary tissue. Bioinform Biol Insights 7:167

    PubMed Central  PubMed  Google Scholar 

  74. Slater T (2014) Recent advances in modeling languages for pathway maps and computable biological networks. Drug Discov Today 19(2):193–198

    Article  PubMed  Google Scholar 

  75. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432. doi:10.1093/bioinformatics/btq675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Saito R, Smoot ME, Ono K et al (2012) A travel guide to cytoscape plugins. Nat Methods 9(11):1069–1076. doi:10.1038/nmeth.2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 9(5):471–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449. doi:10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  79. Leung MC, Rooney JP, Ryde IT et al (2013) Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharm Toxicol 14(1):9

    Article  CAS  Google Scholar 

  80. McRedmond JP, Park SD, Reilly DF et al (2004) Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3(2):133–144. doi:10.1074/mcp.M300063-MCP200

    Article  CAS  PubMed  Google Scholar 

  81. Buschow SI, Lasonder E, van Deutekom HW et al (2010) Dominant processes during human dendritic cell maturation revealed by integration of proteome and transcriptome at the pathway level. J Proteome Res 9(4):1727–1737

    Article  CAS  PubMed  Google Scholar 

  82. Fisher RA (1925) Statistical methods for research workers. Genesis Publishing Pvt, Ltd, New Delhi

    Google Scholar 

  83. Stouffer SA, Suchman EA, DeVinney LC et al (1949) Studies in social psychology in world war II, vol 1. The American soldier: adjustment during army life. Princeton University Press, Princeton, NJ, US

    Google Scholar 

  84. Kaever A, Landesfeind M, Feussner K et al (2014) Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One 9(2), e89297. doi:10.1371/journal.pone.0089297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Balbin OA, Prensner JR, Sahu A et al (2013) Reconstructing targetable pathways in lung cancer by integrating diverse omics data. Nat Commun 4:2617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Hood LE, Omenn GS, Moritz RL et al (2012) New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences. Proteomics 12(18):2773–2783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28(1):17

    Article  PubMed  Google Scholar 

  88. Martin SF, Falkenberg H, Dyrlund TF et al (2013) PROTEINCHALLENGE: crowd sourcing in proteomics analysis and software development. J Proteomics 88:41–46

    Article  CAS  PubMed  Google Scholar 

  89. Roemer E, Schramke H, Weiler H et al (2012) Mainstream smoke chemistry and in vitro and in vivo toxicity of the reference cigarettes 3R4F and 2R4F. Contribute Tobacco Res 25:316–335

    CAS  Google Scholar 

  90. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10(6):1150–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Rauch A, Bellew M, Eng J et al (2006) Computational proteomics analysis system (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5(1):112–121

    Article  CAS  PubMed  Google Scholar 

  92. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  93. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14(1):128

    Article  PubMed Central  PubMed  Google Scholar 

  94. Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Martin F, Sewer A, Talikka M et al (2014) Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics 15(1):238. doi:10.1186/1471-2105-15-238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Dittrich MT, Klau GW, Rosenwald A et al (2008) Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231. doi:10.1093/bioinformatics/btn161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Beisser D, Klau GW, Dandekar T et al (2010) BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 26(8):1129–1130

    Article  CAS  PubMed  Google Scholar 

  98. Aluru M, Zola J, Nettleton D et al (2013) Reverse engineering and analysis of large genome-scale gene networks. Nucleic Acids Res 41(1):e24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Komurov K, Dursun S, Erdin S et al (2012) NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics 13(1):282

    Article  PubMed Central  PubMed  Google Scholar 

  100. Komurov K, White MA, Ram PT (2010) Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput Biol 6(8), e1000889

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Petrochilos D, Shojaie A, Gennari J et al (2013) Using random walks to identify cancer-associated modules in expression data. BioData Min 6(1):17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Ulitsky I, Krishnamurthy A, Karp RM et al (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One 5(10), e13367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. McClellan EA, Moerland PD, van der Spek PJ et al (2013) NetWeAvers: an R package for integrative biological network analysis with mass spectrometry data. Bioinformatics 29(22):2946–2947. doi:10.1093/bioinformatics/btt513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Saha A, Tan AC, Kang J (2014) Automatic context-specific subnetwork discovery from large interaction networks. PLoS One 9(1), e84227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Eddy JA, Hood L, Price ND et al (2010) Identifying tightly regulated and variably expressed networks by differential rank conservation (DIRAC). PLoS Comput Biol 6(5), e1000792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The research described in this chapter of the book was funded by Philip Morris International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjoern Titz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Titz, B. et al. (2015). Analysis of Proteomic Data for Toxicological Applications. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics