Skip to main content

Determination and Analysis of Cellular Metabolic Changes by Noncanonical Hedgehog Signaling

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1322))

Abstract

Hedgehog is a morphogen essential for body patterning and proper embryonic development from flies to humans. Thought quiescent in adults, its inappropriate reactivation is associated with many disparate genetic and sporadic types of human cancers. Recent findings have demonstrated a key, yet unexpected, role of the Hedgehog signaling pathway in metabolic control. Here, we describe a panel of methods to determine and analyze cellular and organismal metabolic changes downstream of the Hedgehog signaling pathway.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4(1):39–49

    Article  CAS  PubMed  Google Scholar 

  2. Aberger F, Ruiz I, Altaba A (2014) Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 33:93–104

    Article  PubMed Central  PubMed  Google Scholar 

  3. Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429

    Article  PubMed  Google Scholar 

  4. Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA (2014) Canonical and non-canonical hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 33:81–92

    Article  CAS  PubMed  Google Scholar 

  5. Mukhopadhyay S, Rohatgi R (2014) G-protein-coupled receptors, hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72

    Article  CAS  PubMed  Google Scholar 

  6. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087

    Article  CAS  PubMed  Google Scholar 

  7. Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012) Noncanonical hedgehog signaling. Vitam Horm 88:55–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T et al (2012) Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 151(2):414–426

    Article  CAS  PubMed  Google Scholar 

  9. Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med 19(11):1410–1422

    Article  CAS  PubMed  Google Scholar 

  10. Mullor JL, Sánchez P, Ruiz i Altaba A (2002) Pathways and consequences: Hedgehog signaling in human disease. Trends Cell Biol 12(12):562–569

    Article  CAS  PubMed  Google Scholar 

  11. Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81(2):243–248

    Article  CAS  PubMed  Google Scholar 

  12. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  PubMed Central  PubMed  Google Scholar 

  13. Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140(1):148–160

    Article  CAS  PubMed  Google Scholar 

  14. Gaster M, Kristensen SR, Beck-Nielsen H, Schrøder HD (2001) A cellular model system of differentiated human myotubes. APMIS 109(11):35–44

    Google Scholar 

  15. Gaster M, Schrøder HD, Handberg A, Beck-Nielsen H (2001) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537(3):211–221

    Article  CAS  PubMed  Google Scholar 

  16. DeFronzo RA, Davidson JA, Del Prato S (2012) The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab 14(1):5–14

    Article  CAS  PubMed  Google Scholar 

  17. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34(2–3):121–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gaster M, Petersen I, Højlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51(4):921–927

    Article  CAS  PubMed  Google Scholar 

  19. Tsou P, Zheng B, Hsu CH, Sasaki AT, Cantley LC (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13(4):476–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lipinski RJ, Hutson PR, Hannam PW, Nydza RJ, Washington IM, Moore RW et al (2008) Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the hedgehog signaling antagonist cyclopamine in the mouse. Toxicol Sci 104(1):189–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sakata N, Yoshimatsu G, Tsuchiya H, Egawa S, Unno M (2012) Animal models of diabetes mellitus for islet transplantation. Exp Diabetes Res 2012:256707

    Article  PubMed Central  PubMed  Google Scholar 

  22. Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B et al (2014) Streptozotocin-Induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int 2014:819065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF, Bernard E et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115(12):3554–3563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425(1):88–90

    Article  CAS  PubMed  Google Scholar 

  25. Rong JX, Klein JL, Qiu Y, Xie M, Johnson JH, Waters KM et al (2011) Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res 2011:179454

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hemmingsen M, Vedel S, Skafte-Pedersen P, Sabourin D, Collas P, Bruus H, Dufva M (2013) The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells. PLoS One 8(5):e63638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Frerichs H, Ball EG (1964) Studies on the metabolism of adipose tissue. XVI. Inhibition by phlorizin and phloretin of the insulin-stimulated uptake of glucose. Biochemistry 3:981–985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JAP acknowledges generous support from the DFG, ERC, EU-FP7, BMBF (DEEP), and the MPG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Andrew Pospisilik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teperino, R., Pospisilik, J.A. (2015). Determination and Analysis of Cellular Metabolic Changes by Noncanonical Hedgehog Signaling. In: Riobo, N. (eds) Hedgehog Signaling Protocols. Methods in Molecular Biology, vol 1322. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2772-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2772-2_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2771-5

  • Online ISBN: 978-1-4939-2772-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics