Skip to main content

Efficient Detection of Indian Hedgehog During Endochondral Ossification by Whole-Mount Immunofluorescence

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1322))

Abstract

Endochondral ossification is a process essential for the formation of the vertebrate skeleton. Indian Hedgehog (IHH) is a key regulator of this process. So far, monitoring IHH expression in whole-mount developing skeletal structures has been hampered by the permeability and the opacity of the tissue. Whole-mount preparations require advanced techniques of fixation, clearing, and staining. We describe a reliable method for fixing, immunostaining, and clearing whole-mount developing cartilages that allows for the detection of IHH in the developing skeleton of avian embryos. The fixation process ensures a proper preservation of cellular structures and, especially, the antigenicity of the tissue, allowing the antibody labelling of IHH. This protocol reveals specific cell staining in localized regions of the developing cartilage, facilitating the study of IHH function during key periods of skeletogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bisgard JD, Bisgard ME (1935) Longitudinal growth of long bones. Arch Surg 31(4):568–578

    Article  Google Scholar 

  2. Fell HB (1925) The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J Morphol 40(3):417–459

    Article  Google Scholar 

  3. Crombrugghe B, Lefebvre V, Nakashima K (2001) Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 13(6):721–728

    Article  PubMed  Google Scholar 

  4. Maes C, Kobayashi T et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Vortkamp A, Lee K et al (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273(5275):613–622

    Article  CAS  PubMed  Google Scholar 

  6. Mak K, Chen M et al (2006) Wnt/{beta}-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133(18):3695

    Article  CAS  PubMed  Google Scholar 

  7. Chung U, Schipani E et al (2001) Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 107(3):295–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pathi S, Rutenberg J et al (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 209(2):239–253

    Article  CAS  PubMed  Google Scholar 

  9. Naski MC, Colvin JS et al (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125(24):4977–4988

    CAS  PubMed  Google Scholar 

  10. Kronenberg H, Lee K et al (1997) Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol 154(3 Suppl):S39–S45

    CAS  PubMed  Google Scholar 

  11. Minina E, Wenzel H et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128(22):4523–4534

    CAS  PubMed  Google Scholar 

  12. Koziel L, Wuelling M et al (2005) Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132(23):5249–5260

    Article  CAS  PubMed  Google Scholar 

  13. Karp SJ, Schipani E et al (2000) Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and-independent pathways. Development 127(3):543–548

    CAS  PubMed  Google Scholar 

  14. Long F, Chung U-i et al (2004) Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131(6):1309–1318

    Article  CAS  PubMed  Google Scholar 

  15. Hammond CL, Schulte-Merker S (2009) Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 136(23):3991–4000

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Meng J et al (2007) IHH and FGF8 coregulate elongation of digit primordia. Biochem Biophys Res Commun 363(3):513–518

    Article  CAS  PubMed  Google Scholar 

  17. Nagashima H, Sugahara F et al (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325(5937):193–196

    Article  CAS  PubMed  Google Scholar 

  18. Klymkowsky MW, Hanken J (1991) Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol 36:419–441

    Article  CAS  PubMed  Google Scholar 

  19. Hama H, Kurokawa H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488

    Article  CAS  PubMed  Google Scholar 

  20. Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16(8):1154–1161

    Article  CAS  PubMed  Google Scholar 

  21. Kuwajima T, Sitko AA et al (2013) ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140(6):1364–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  CAS  PubMed  Google Scholar 

  23. Saunders JW (1948) The proximo‐distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108(3):363–403

    Article  PubMed  Google Scholar 

  24. Sherman A, McGrew M et al (2010) The Roslin Institute Transgenic Chicken Facility: developments in chicken transgenesis. Transgenic Res 19(1):151

    Google Scholar 

  25. Dent JA, Klymkowsky MW (1989) Whole-mount analyses of cytoskeletal reorganization and function during oogenesis and early embryogenesis in Xenopus. In: Schatten H, Schatten G (eds) The cell biology of fertilization. Academic, New York, NY, pp 63–103

    Chapter  Google Scholar 

  26. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by FONDAP 15090007 (V.P.), Fondecyt grant 1110237 (V.P.), Fondecyt doctoral grant 24100058 (J.B.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Francisco Botelho or Palma A. Verónica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Botelho, J.F., Smith-Paredes, D., Verónica, P.A. (2015). Efficient Detection of Indian Hedgehog During Endochondral Ossification by Whole-Mount Immunofluorescence. In: Riobo, N. (eds) Hedgehog Signaling Protocols. Methods in Molecular Biology, vol 1322. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2772-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2772-2_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2771-5

  • Online ISBN: 978-1-4939-2772-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics