Skip to main content

Preparation and Crystallization of Riboswitches

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

Recent studies have revealed that the majority of biological processes are controlled by noncoding RNAs. Among many classes of noncoding RNAs, metabolite-sensing segments of mRNAs called riboswitches are unique. Discovered over a decade ago in all three kingdoms of life, riboswitches specifically and directly interact with various metabolites and regulate expression of multiple genes, often associated with metabolism and transport of small molecules. Thus, riboswitches do not depend on proteins for binding to small molecules and play a role as both metabolite sensors and effectors of gene control. Riboswitches are typically located in the untranslated regions of mRNAs where they form alternative structures in the presence and absence of the ligand and modulate expression of genes through the formation of regulatory elements. To understand the mechanism of the riboswitch-driven gene control, it is important to elucidate how riboswitches interact with cognate and discriminate against non-cognate ligands. Here we outline the methodology to synthesize riboswitch RNAs and prepare riboswitch–ligand complexes for crystallographic and biochemical studies. The chapter describes how to design, prepare, and conduct crystallization screening of riboswitch–ligand complexes. The methodology was refined on crystallographic studies of several riboswitches and can be employed for other types of RNA molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    Article  CAS  PubMed  Google Scholar 

  2. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043

    Article  CAS  PubMed  Google Scholar 

  3. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  CAS  PubMed  Google Scholar 

  4. Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    Article  CAS  PubMed  Google Scholar 

  7. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  CAS  PubMed  Google Scholar 

  8. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Serganov A, Patel DJ (2012) Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 41:343–370

    Article  CAS  PubMed  Google Scholar 

  10. Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pikovskaya O, Serganov AA, Polonskaia A et al (2009) Preparation and crystallization of riboswitch-ligand complexes. Methods Mol Biol 540:115–128

    Article  CAS  PubMed  Google Scholar 

  12. Peselis A, Serganov A (2012) Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat Struct Mol Biol 19:1182–1184

    Article  CAS  PubMed  Google Scholar 

  13. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974

    Article  CAS  PubMed  Google Scholar 

  15. Rong M, Durbin RK, McAllister WT (1998) Template strand switching by T7 RNA polymerase. J Biol Chem 273:10253–10260

    Article  CAS  PubMed  Google Scholar 

  16. Pleiss JA, Derrick ML, Uhlenbeck OC (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4:1313–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Helm M, Brule H, Giege R et al (1999) More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5:618–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nacheva GA, Berzal-Herranz A (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur J Biochem 270:1458–1465

    Article  CAS  PubMed  Google Scholar 

  19. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  CAS  PubMed  Google Scholar 

  20. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ferre-D'Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395:567–574

    Article  PubMed  Google Scholar 

  22. Serganov A, Rak A, Garber M et al (1997) Ribosomal protein S15 from Thermus thermophilus-cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein. Eur J Biochem 246:291–300

    Article  CAS  PubMed  Google Scholar 

  23. Xiong AS, Yao QH, Peng RH et al (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  24. Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31:e82

    Article  PubMed Central  PubMed  Google Scholar 

  25. Studier FW, Rosenberg AH, Dunn JJ et al (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Serganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peselis, A., Gao, A., Serganov, A. (2016). Preparation and Crystallization of Riboswitches. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics