Skip to main content

Anions in Nucleic Acid Crystallography

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dock AC, Lorber B, Moras D, Pixa G, Thierry JC, Giegé R (1984) Crystallization of transfer ribonucleic acids. Biochimie 66:179–201

    Article  CAS  PubMed  Google Scholar 

  2. Ducruix A, Giegé R (1999) Crystallization of nucleic acids and proteins, vol 210, A practical approach. The practical approach series. Oxford University Press, Oxford

    Google Scholar 

  3. Ferre-D’Amare AR (2010) Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods 52:159–167

    Article  PubMed Central  PubMed  Google Scholar 

  4. Golden BL (2007) Preparation and crystallization of RNA. Methods Mol Biol 317:239–257

    Article  Google Scholar 

  5. Golden BL, Kundrot CE (2003) RNA crystallization. J Struct Biol 142:98–107

    Article  CAS  PubMed  Google Scholar 

  6. Holbrook SR, Holbrook EL, Walukiewicz HE (2001) Crystallization of RNA. Cell Mol Life Sci 58:234–243

    Article  CAS  PubMed  Google Scholar 

  7. Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34:408–414

    Article  CAS  PubMed  Google Scholar 

  8. Mooers BH (2009) Crystallographic studies of DNA and RNA. Methods 47:168–176

    Article  CAS  PubMed  Google Scholar 

  9. Reyes FE, Garst AD, Batey RT (2009) Strategies in RNA crystallography. Methods Enzymol 469:119–139

    Article  CAS  PubMed  Google Scholar 

  10. Russo Krauss I, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Article  PubMed  Google Scholar 

  11. Auffinger P, Grover N, Westhof E (2011) Metal ion binding to RNA. Met Ions Life Sci 9:1–35

    Article  CAS  PubMed  Google Scholar 

  12. Auffinger P, Bielecki L, Westhof E (2004) Anion binding to nucleic acids. Structure 12:379–388

    Article  CAS  PubMed  Google Scholar 

  13. Giege R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280:6456–6497

    Article  CAS  PubMed  Google Scholar 

  14. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322

    Article  CAS  PubMed  Google Scholar 

  15. Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister's historical papers. Curr Opin Colloid Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  16. Marcus Y (2012) Ions in water and biophysical implications – from chaos to cosmos. Springer, Berlin

    Book  Google Scholar 

  17. Kondo J, Westhof E (2011) Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes. Nucleic Acids Res 39:8628–8637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB (2009) Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 37:4898–4918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Freund J, Kalbitzer HR (1995) Physiological buffers for NMR spectroscopy. J Biomol NMR 5:321–322

    Article  CAS  PubMed  Google Scholar 

  20. Jalilehvand F (2006) Sulfur: not a “silent” element any more. Chem Soc Rev 35:1256–1268

    Article  CAS  PubMed  Google Scholar 

  21. Pickering IJ, Prince RC, Divers T, George GN (1998) Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett 441:11–14

    Article  CAS  PubMed  Google Scholar 

  22. van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FI, Orij R, Tuzun I, van den Brink J, Smits GJ, van Gulik WM, Brul S, Heijnen JJ, de Winde JH, de Mattos MJ, Kettner C, Nielsen J, Westerhoff HV, Bakker BM (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–760

    Article  PubMed  Google Scholar 

  23. Li S, Smith KD, Davis JH, Gordon PB, Breaker RR, Strobel SA (2013) Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc Natl Acad Sci USA 110:19018–19023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Godt RE, Maughan DW (1988) On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol 254:C591–C604

    CAS  PubMed  Google Scholar 

  25. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Article  CAS  Google Scholar 

  26. Wilcox JL, Ahluwalia AK, Bevilacqua PC (2011) Charged nucleobases and their potential for RNA catalysis. Acc Chem Res 44:1270–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wilcox JL, Bevilacqua PC (2013) A simple fluorescence method for pK(a) determination in RNA and DNA reveals highly shifted pK(a)'s. J Am Chem Soc 135:7390–7393

    Article  CAS  PubMed  Google Scholar 

  28. Durant PC, Davis DR (1999) Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base pair and by pseudouridine. J Mol Biol 1999:115–131

    Article  Google Scholar 

  29. Barraud P, Schmitt E, Mechulam Y, Dardel F, Tisne C (2008) A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAf Met to initiate protein synthesis. Nucleic Acids Res 36:4894–4901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Auffinger P, Westhof E (1999) Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol 292:467–483

    Article  CAS  PubMed  Google Scholar 

  31. Bostrom M, Lonetti B, Fratini E, Baglioni P, Ninham BW (2006) Why pH titration in protein solutions follows a Hofmeister series. J Phys Chem B 110:7563–7566

    Article  CAS  PubMed  Google Scholar 

  32. Ren A, Rajashankar KR, Patel DJ (2012) Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486:85–89

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lin Y, Kielkopf CL (2008) X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines. Biochemistry 47:5503–5514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Delfosse V, Bouchard P, Bonneau E, Dagenais P, Lemay JF, Lafontaine DA, Legault P (2010) Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res 38:2057–2068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Long D, Yang D (2009) Buffer interference with protein dynamics: a case study on human liver fatty acid binding protein. Biophys J 96:1482–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Quan L, Wei D, Jiang X, Liu Y, Li Z, Li N, Li K, Liu F, Lai L (2008) Resurveying the Tris buffer solution: the specific interaction between tris(hydroxymethyl)aminomethane and lysozyme. Anal Biochem 378:144–150

    Article  CAS  PubMed  Google Scholar 

  37. Wong M, Khirich G, Loria JP (2013) What’s in your buffer? Solute altered millisecond motions detected by solution NMR. Biochemistry 52:6548–6558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McDonnell NB, Preisler RS (1989) Hydrophobic moieties in cations, anions, and alcohols promote the B-to-Z transition in poly[d(G-C)] and poly[d(G-m5C)]. Biochem Biophys Res Commun 164:426–433

    Article  CAS  PubMed  Google Scholar 

  39. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst B58:380–388

    Article  Google Scholar 

  40. Allen FH, Taylor R (2004) Research applications of the Cambridge Structural Database (CSD). Chem Soc Rev 33:463–475

    Article  CAS  PubMed  Google Scholar 

  41. Groom CR, Allen FH (2014) The Cambridge Structural Database in retrospect and prospect. Angew Chem Int Ed Engl 53:662–671

    Article  CAS  PubMed  Google Scholar 

  42. Boggon TJ, Shapiro L (2000) Screening for phasing atoms in protein crystallography. Structure 8:R143–R149

    Article  CAS  PubMed  Google Scholar 

  43. Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V (2003) Phasing the 30S ribosomal subunit structure. Acta Crst B59:2044–2050

    CAS  Google Scholar 

  44. Dauter Z, Dauter M, Rajashankar KR (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Cryst D56:232–237

    Article  CAS  Google Scholar 

  45. Kieft JS, Chase E, Costantino DA, Golden BL (2010) Identification and characterization of anion binding sites in RNA. RNA 16:1118–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ennifar E, Carpentier P, Ferrer JL, Walter P, Dumas P (2002) X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Cryst D58:1262–1268

    Article  CAS  Google Scholar 

  47. Olieric V, Ennifar E, Meents A, Fleurant M, Besnard C, Pattison P, Schiltz M, Schulze-Briese C, Dumas P (2007) Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography. Acta Cryst D63:759–768

    Article  CAS  Google Scholar 

  48. Marcus Y (1988) Ionic radius in aqueous solutions. Chem Rev 88:1475–1498

    Article  CAS  Google Scholar 

  49. Kiliszek A, Kierzek R, Krzyzosiak WJ, Rypniewski W (2011) Crystal structures of CGG RNA repeats with implications for fragile X-associated tremor ataxia syndrome. Nucleic Acids Res 39:7308–7315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Drew H, Takano T, Tanaka S, Itakura K, Dickerson RE (1980) High-salt d(CpGpCpG), a left-handed Z′ DNA double helix. Nature 286:567–573

    Article  CAS  PubMed  Google Scholar 

  51. Chatake T, Sunami T (2013) Direct interactions between Z-DNA and alkaline earth cations, discovered in the presence of high concentrations of MgCl2 and CaCl2. J Inorg Biochem 124:15–25

    Article  CAS  PubMed  Google Scholar 

  52. Klein DJ, Schmeing TM, Moore PB, Steitz TA (2001) The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214–4221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gabdulkhakov A, Nikonov S, Garber M (2013) Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Cryst D69:997–1004

    Article  CAS  Google Scholar 

  54. Mueller-Dieckmann C, Panjikar S, Schmidt A, Mueller S, Kuper J, Geerlof A, Wilmanns M, Singh RK, Tucker PA, Weiss MS (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Cryst D63:366–380

    Article  CAS  Google Scholar 

  55. Masquida B, Sauter C, Westhof E (1999) A sulfate pocket formed by three GoU pairs in the 0.97 Å resolution x-ray structure of a nonameric RNA. RNA 5:1384–1395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Goh GB, Knight JL, Brooks CL 3rd (2013) pH-dependent dynamics of complex RNA macromolecules. J Chem Theor Comput 9:935–943

    Article  CAS  Google Scholar 

  57. Goh GB, Knight JL, Brooks CL 3rd (2013) Towards accurate prediction of protonation equilibrium of nucleic acids. J Phys Chem Lett 4:760–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Chakrabarti P (1993) Anion binding sites in protein structures. J Mol Biol 234:463–482

    Article  CAS  PubMed  Google Scholar 

  59. Pflugrath JW, Quiocho FA (1988) The 2 Å resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J Mol Biol 200:163–180

    Google Scholar 

  60. Hirsch AK, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed Engl 46:338–352

    Article  CAS  PubMed  Google Scholar 

  61. Ravikumar I, Ghosh P (2012) Recognition and separation of sulfate anions. Chem Soc Rev 41:3077–3098

    Article  CAS  PubMed  Google Scholar 

  62. Dauter Z, Dauter M, de La Fortelle E, Bricogne G, Sheldrick GM (1999) Can anomalous signal of sulfur become a tool for solving protein crystal structures? J Mol Biol 289:83–92

    Article  CAS  PubMed  Google Scholar 

  63. Echols N, Morshed N, Afonine PV, McCoy AJ, Miller MD, Read RJ, Richardson JS, Terwilliger TC, Adams PD (2014) Automated identification of elemental ions in macromolecular crystal structures. Acta Cryst D70:1104–1114

    Article  CAS  Google Scholar 

  64. Joosten RP, Joosten K, Cohen SX, Vriend G, Perrakis A (2011) Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27:3392–3398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Joosten RP, Salzemann J, Bloch V, Stockinger H, Berglund AC, Blanchet C, Bongcam-Rudloff E, Combet C, Da Costa AL, Deleage G, Diarena M, Fabbretti R, Fettahi G, Flegel V, Gisel A, Kasam V, Kervinen T, Korpelainen E, Mattila K, Pagni M, Reichstadt M, Breton V, Tickle IJ, Vriend G (2009) PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr 42:376–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kleywegt GJ (2009) On vital aid: the why, what and how of validation. Acta Cryst D65:134–139

    Article  CAS  Google Scholar 

  67. Williams LD (2005) Between objectivity and whim: nucleic acid structural biology. Top Curr Chem 253:77–88

    CAS  Google Scholar 

  68. Pogenberg V, Consani Textor L, Vanhille L, Holton SJ, Sieweke MH, Wilmanns M (2014) Design of a bZip transcription factor with homo/heterodimer-induced DNA-binding preference. Structure 22:466–477

    Article  CAS  PubMed  Google Scholar 

  69. Tomita K, Ishitani R, Fukai S, Nureki O (2006) Complete crystallographic analysis of the dynamics of CCA sequence addition. Nature 443:956–960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.A. wishes to thank Prof. Eric Westhof for ongoing support. We thank Dr Eric Ennifar, Dr Bernard Lorber, Prof. Richard Giegé and Prof. Neena Grover for stimulating discussions. This work has been published under the framework of the LABEX: ANR-10-LABX0036_NETRNA and benefits from a funding from the state managed by the French National Research Agency as part of the program “Investments for the future.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Auffinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

D’Ascenzo, L., Auffinger, P. (2016). Anions in Nucleic Acid Crystallography. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics