Skip to main content

Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

The biotechnological relevance of protein glycosylation has exponentially grown in recent years. With the advances in protein glycosylation research, new possibilities for glyco-engineering have arisen, and a wide array of glycans can be designed and potentially transferred to target proteins in the biotechnologically relevant host Escherichia coli. Here we provide insight on how to select the best strains and plasmids. We also describe methods for determination of glycan expression and assembly, protein glycosylation using western blot, and preparation of samples for mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    Article  CAS  PubMed  Google Scholar 

  2. Ciocchini AE, Rey Serantes DA, Melli LJ et al (2013) Development and validation of a novel diagnostic test for human brucellosis using a glyco-engineered antigen coupled to magnetic beads. PLoS Negl Trop Dis 7:e2048

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wacker M, Wang L, Kowarik M et al (2014) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 209:1551–1561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cuccui J, Thomas RM, Moule MG et al (2013) Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol 3:130002

    Article  PubMed Central  PubMed  Google Scholar 

  5. Macmillan D, Bill RM, Sage KA et al (2001) Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chem Biol 8:133–145

    Article  CAS  PubMed  Google Scholar 

  6. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  PubMed  Google Scholar 

  7. Ihssen J, Kowarik M, Dilettoso S et al (2010) Production of glycoprotein vaccines in Escherichia coli. Microb Cell Fact 9:61

    Article  PubMed Central  PubMed  Google Scholar 

  8. Iwashkiw JA, Fentabil MA, Faridmoayer A et al (2012) Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis. Microb Cell Fact 11:13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hug I, Zheng B, Reiz B et al (2011) Exploiting bacterial glycosylation machineries for the synthesis of a Lewis antigen-containing glycoprotein. J Biol Chem 286:37887–37894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Valderrama-Rincon JD, Fisher AC, Merritt JH et al (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8:434–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Young NM, Brisson JR, Kelly J et al (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539

    Article  CAS  PubMed  Google Scholar 

  12. Ielmini MV, Feldman MF (2011) Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology 21:734–742

    Article  CAS  PubMed  Google Scholar 

  13. Nita-Lazar M, Wacker M, Schegg B et al (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15:361–367

    Article  CAS  PubMed  Google Scholar 

  14. Faridmoayer A, Fentabil MA, Mills DC et al (2007) Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. J Bacteriol 189:8088–8098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schulz BL, Jen FE, Power PM et al (2013) Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates. PLoS One 8:e62768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vik A, Aas FE, Anonsen JH et al (2009) Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 106:4447–4452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kowarik M, Young NM, Numao S et al (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen MM, Glover KJ, Imperiali B (2007) From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46:5579–5585

    Article  CAS  PubMed  Google Scholar 

  19. Faridmoayer A, Fentabil MA, Haurat MF et al (2008) Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem 283:34596–34604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Coimbra RS, Grimont F, Lenormand P et al (2000) Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 151:639–654

    Article  CAS  PubMed  Google Scholar 

  21. Dykxhoorn DM, St Pierre R, Linn T (1996) A set of compatible tac promoter expression vectors. Gene 177:133–136

    Article  CAS  PubMed  Google Scholar 

  22. Lees-Miller RG, Iwashkiw JA, Scott NE et al (2013) A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol 89:816–830

    Article  CAS  PubMed  Google Scholar 

  23. Paton AW, Paton JC (1999) Molecular characterization of the locus encoding biosynthesis of the lipopolysaccharide O-antigen of Escherichia coli serotype O113. Infect Immun 67:5930–5937

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Rush JS, Alaimo C, Robbiani R et al (2010) A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J Biol Chem 285:1671–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Aranda J, Poza M, Pardo BG et al (2010) A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol 10:279

    Article  PubMed Central  PubMed  Google Scholar 

  26. Friedman AM, Long SR, Brown SE et al (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Article  CAS  PubMed  Google Scholar 

  27. Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100:195–199

    Article  CAS  PubMed  Google Scholar 

  28. Linton D, Dorrell N, Hitchen PG et al (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55:1695–1703

    Article  CAS  PubMed  Google Scholar 

  29. Durfee T, Nelson R, Baldwin S et al (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tsai CMFC (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Quintanilla F, Iwashkiw JA, Price NL et al (2014) Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front Microbiol 5:381

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shevchenko A, Jensen ON, Podtelejnikov AV et al (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93:14440–14445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Scott NE, Parker BL, Connolly AM et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10:M000031–MCP201

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vozza, N.F., Feldman, M.F. (2015). Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli . In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics