Skip to main content

Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755

    Article  CAS  PubMed  Google Scholar 

  2. Julenius K, Molgaard A, Gupta R et al (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164

    Article  CAS  PubMed  Google Scholar 

  3. Leahy DJ, Axel R, Hendrickson WA (1992) Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 Å resolution. Cell 68:1145–1162

    Article  CAS  PubMed  Google Scholar 

  4. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–644

    Article  CAS  PubMed  Google Scholar 

  5. Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    Article  CAS  PubMed  Google Scholar 

  6. Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461

    Article  CAS  PubMed  Google Scholar 

  7. Davis SJ, Puklavec MJ, Ashford DA et al (1993) Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein Eng 6:229–232

    Article  CAS  PubMed  Google Scholar 

  8. Davis SJ, Davies EA, Barclay AN et al (1995) Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem 270:369–375

    Article  PubMed  Google Scholar 

  9. Butters TD, Sparks LM, Harlos K et al (1999) Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization. Protein Sci 8:1696–1701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Google Scholar 

  11. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9

    Article  PubMed Central  PubMed  Google Scholar 

  12. Davie A, Greene A, Lullau E et al (2005) Optimisation and evaluation of a high-throughput mammalian protein expression system. Protein Expr Purif 42:111–21

    Article  Google Scholar 

  13. Geisse S, Henke M (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics 6:165–70

    Article  CAS  PubMed  Google Scholar 

  14. Aricescu AR, Assenberg R, Bill RM et al (2006) Eukaryotic expression: developments for structural proteomics. Acta Crystallogr D Biol Crystallogr 62:1114–1124

    Article  CAS  PubMed  Google Scholar 

  15. Reeves PJ, Callewaert N, Contreras R et al (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK 293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Aricescu AR, Siebold C, Choudhuri K et al (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317:1217–1220

    Article  CAS  PubMed  Google Scholar 

  17. Crispin M, Chang VT, Harvey DJ et al (2009) A human embryonic kidney 293T cell line mutated at the Golgi α-mannosidase II locus. J Biol Chem 284:21684–21695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jones EY, Davis SJ, Williams AF et al (1992) Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239

    Article  CAS  PubMed  Google Scholar 

  19. Bodian DL, Jones EY, Harlos K et al (1994) Crystal structure of the extracellular region of the human adhesion molecule CD2 at 2.5 Å resolution. Structure 2:755–766

    Article  CAS  PubMed  Google Scholar 

  20. Ikemizu S, Sparks LM, van der Merwe PA et al (1999) Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8 Å resolution. Proc Natl Acad Sci U S A 96:4289–4294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Evans EJ, Castro MA, O’Brien R et al (2006) Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48. J Biol Chem 281:29309–29320

    Article  CAS  PubMed  Google Scholar 

  22. Ikemizu S, Glibert RJ, Fennelly JA et al (2000) Structure and dimerization of a soluble form of B7-1. Immunity 12:51–60

    Article  CAS  PubMed  Google Scholar 

  23. Yu C, Sonnen AF, George R et al (2011) Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 286:6685–6696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bowden TA, Baruah K, Coles CH et al (2012) Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc 134:17554–17563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Crispin M, Bowden TA, Coles CH et al (2009) Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 387:1061–1066

    Article  CAS  PubMed  Google Scholar 

  26. Crispin M, Yu X, Bowden TA (2013) Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci U S A 110:E3544–3546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bowden TA, Crispin M, Graham SC et al (2009) Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol 83:8259–8265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lyumkis D, Julien JP, de Val N et al (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342:1484–1490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Demaison C, Parsley K, Brouns G et al (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813

    Article  CAS  PubMed  Google Scholar 

  30. Aricescu AR, Lu W, Jones EY (2006) A time and cost efficient system for high level protein production in mammalian cells. Act Crystallogr D Biol Crystallogr 10:1243–1250

    Article  Google Scholar 

  31. Grueninger-Leitch F, D’Arcy A, D’Arcy B et al (1996) Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci 5:2617–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Olsnes S, Pihl A (1982) In: Cohen P, van Heyningen S (Eds). Molecular action of toxins and viruses. Elsevier, Amsterdam. pp. 51–105

    Google Scholar 

  33. Spooner RA, Lord JM (2012) How ricin and shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Top Microbiol Immunol 357:19–40

    CAS  PubMed  Google Scholar 

  34. Spooner RA, Watson PD, Marsden CJ et al (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li S, Spooner RA, Allen SC et al (2010) Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum. Mol Biol Cell 21:2543–2554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Spooner RA, Hart PJ, Cook JP et al (2008) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:17408–17413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Pietroni P, Vasisht N, Cook JP et al (2013) The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain. Biochem J 453:435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission as SPINE (contract QLG2-CT-2002-00988) under the Integrated Programme “Quality of Life and Management of Living Resources,” the Wellcome Trust, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Glycobiology Institute Endowment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chang, V.T., Spooner, R.A., Crispin, M., Davis, S.J. (2015). Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics