Skip to main content

SweetBac: Applying MultiBac Technology Towards Flexible Modification of Insect Cell Glycosylation

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

Observed different glycosylation patterns of glycoconjugates (recombinantly) produced in various eukaryotic organisms are a direct consequence of differences in numerous proteins involved in biosynthesis of the relevant glycan chains in these species. The need for efficient, robust and flexible methods for recombinant expression of proteins is met by the recently described MultiBac technology, an advanced and optimized baculovirus-based system for simultaneous recombinant protein expression in insect cells. A derivative of MultiBac technology, the SweetBac system aims at the modification of the glycosylation potential of insect cells as expression hosts. The application of SweetBac, including the methods needed to investigate the glycosylation pattern of the purified recombinant protein, is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  2. Kanda Y, Yamada T, Mori K et al (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118

    Article  CAS  PubMed  Google Scholar 

  3. Bieniossek C, Richmond TJ, Berger I (2008) MultiBac: multigene baculovirus-based eukaryotic protein complex production. Curr Protoc Protein Sci. Chapter 5; Unit 5: 20

    Google Scholar 

  4. Bieniossek C, Imasaki T, Takagi Y et al (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37:49–57

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald DJ, Berger P, Schaffitze C et al (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3:1021–1032

    Article  CAS  PubMed  Google Scholar 

  6. Berger I, Garzoni F, Chaillet M et al (2013) The multiBac protein complex production platform at the EMBL. J Visual Exp (77):e50159. doi:10.3791/50159

  7. Rendic D, Wilson IBH, Paschinger K (2008) The glycosylation capacity of insect cells. Croatica Chem Acta 81:7–21

    CAS  Google Scholar 

  8. Rendic D, Wilson IBH, Lubec G et al (2007) Adaptation of the “in-gel release method” to N-glycome analysis of low-milligram amounts of material. Electrophoresis 28:4484–4492

    Article  CAS  PubMed  Google Scholar 

  9. Palmberger D, Rendic D, Tauber P et al (2011) Insect cells for antibody production: evaluation of an efficient alternative. J Biotechnol 153:160–166

    Article  CAS  PubMed  Google Scholar 

  10. Cox MM (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766

    Article  CAS  PubMed  Google Scholar 

  11. Palmberger D, Ashjaei K, Strell S et al (2014) Minimizing fucosylation in insect cell-derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnol J. doi:10.1002/biot.201300061

    Google Scholar 

  12. Mabashi-Asazuma H, Kuo CW, Khoo KH et al (2014) A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 24:325–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Palmberger D, Klausberger M, Berger I et al (2013) MultiBac turns sweet. Bioengineered 4:78–83

    Article  PubMed Central  PubMed  Google Scholar 

  14. Palmberger D, Wilson IBH, Berger I et al (2012) SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One 7, e34226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Krammer F, Margine I, Tan GS et al (2012) A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 7, e43603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Palmberger, D., Rendic, D. (2015). SweetBac: Applying MultiBac Technology Towards Flexible Modification of Insect Cell Glycosylation. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics