Skip to main content

Simultaneous Quantification of Global 5mC and 5hmC Levels in the Nervous System Using an HPLC/MS Method

  • Protocol
  • 1365 Accesses

Part of the book series: Neuromethods ((NM,volume 105))

Abstract

Methylation of DNA at the 5′ carbon of cytosine (5mC) is a key epigenetic regulator of gene expression required for the proper development and function of the central nervous system. Observations of experience-dependent fluctuations in the patterns of 5mC at neuronal gene enhancers, promoters and intragenic regions have prompted great interest in the role of DNA methylation mechanisms in the brain. In addition, the recent discovery of 5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5mC that acts as a DNA demethylation intermediate has offered mechanistic insight into how these changes in 5mC levels are achieved. As a result, numerous techniques have now been adapted or newly developed to quantify and profile 5mC and 5hmC in the genome. Here we describe a method using high performance liquid chromatography electrospray ionization tandem mass spectrometry with multiple reaction monitoring (HPLC-ESI-MS/MS-MRM) for the simultaneous detection and quantification of global 5mC and 5hmC levels present in genomic DNA from nervous-system derived samples. HPLC-ESI-MS/MS-MRM analysis offers the highest levels of sensitivity, selectivity, and precision available for the determination of global changes in these epigenetic modifications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88:170

    Article  CAS  PubMed  Google Scholar 

  2. Rudenko A, Tsai LH (2014) Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology 80:70

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y et al (2008) Epigenetics in the nervous system. J Neurosci 28:11753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245

    Article  CAS  PubMed  Google Scholar 

  6. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Day JJ et al (2013) DNA methylation regulates associative reward learning. Nat Neurosci 16:1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857

    Article  CAS  PubMed  Google Scholar 

  10. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ma DK et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guo JU et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7

    CAS  Google Scholar 

  20. Globisch D et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Koh KP et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011:870726

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kaas GA et al (2013) TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79:1086

    Article  CAS  PubMed  Google Scholar 

  24. Le T, Kim KP, Fan G, Faull KF (2011) A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem 412:203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Munzel M et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49:5375

    Article  PubMed  Google Scholar 

  26. Hahn MA et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 3:291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kraus TF et al (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base,” are associated with anaplasia in human brain tumors. Int J Cancer 131:1577

    Article  CAS  PubMed  Google Scholar 

  28. Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Szulwach KE et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Song L, James SR, Kazim L, Karpf AR (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504

    Article  CAS  PubMed  Google Scholar 

  31. Shen L, Zhang Y (2012) Enzymatic analysis of Tet proteins: key enzymes in the metabolism of DNA methylation. Methods Enzymol 512:93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu S et al (2013) Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic Acids Res 41:6421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIMH grant MH57014. Primary neuronal culture and brain images were provided by Mikael C. Guzman-Karlsson. We would like to thank Jeremy Day and J. David Sweatt for comments and suggestions in the editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett A. Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ross, D.L., Kaas, G.A. (2016). Simultaneous Quantification of Global 5mC and 5hmC Levels in the Nervous System Using an HPLC/MS Method. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics