Skip to main content

Epigenetics: From Basic Biology to Chromatin-Modifying Drugs and New Potential Clinical Applications

  • Protocol

Part of the book series: Neuromethods ((NM,volume 105))

Background

The term epigenetic commonly refers to stable, environment-depending changes in genes expression that occur without altering the underlying DNA sequence. Epigenetic mechanisms are fundamental for normal development and maintenance of tissue-specific gene expression. Abnormalities in epigenetic processes can lead to abnormal gene function and the development of diseases. Recent evidences suggest that several diseases and behavioral disorders result from defects in gene function. Cancer, and other diseases such as autoimmune disease, asthma, type 2 diabetes, metabolic disorders, neuropsychiatric disorders, autism, display aberrant gene expression. A number of compounds targeting enzymes involved in histone acetylation, histone methylation, and DNA methylation have been developed as epigenetic drugs, with some efficacy shown in hematological malignancies and solid tumors. Recently researchers are focusing on finding new epigenetic targets for the development of new molecules for the treatment of different CNS disorders such as autism and schizophrenia targeting specific enzymes that play an important role in gene expression and function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol 69:67–70

    Article  CAS  PubMed  Google Scholar 

  2. Campos EI, Stafford JM, Reinberg D (2014) Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 24:664

    Article  CAS  PubMed  Google Scholar 

  3. Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184:865–868

    Article  CAS  PubMed  Google Scholar 

  4. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  CAS  PubMed  Google Scholar 

  5. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  6. Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C (1986) Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol 187:591–601

    Article  CAS  PubMed  Google Scholar 

  7. Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  CAS  PubMed  Google Scholar 

  9. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  10. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  11. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  CAS  PubMed  Google Scholar 

  12. Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298

    Article  CAS  PubMed  Google Scholar 

  13. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  14. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  CAS  PubMed  Google Scholar 

  15. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    Article  CAS  PubMed  Google Scholar 

  16. Singer-Sam J, Grant M, LeBon JM, Okuyama K, Chapman V, Monk M, Riggs AD (1990) Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol 10:4987–4989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Stoger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71

    Article  CAS  PubMed  Google Scholar 

  18. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25:456–462

    Article  CAS  PubMed  Google Scholar 

  23. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  24. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Backdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJ, Durbin R, Tavare S, Beck S (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schumacher A, Weinhausl A, Petronis A (2008) Application of microarrays for DNA methylation profiling. Methods Mol Biol 439:109–129

    Article  CAS  PubMed  Google Scholar 

  26. Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  CAS  PubMed  Google Scholar 

  27. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  28. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  30. Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    Article  CAS  PubMed  Google Scholar 

  31. Taverna SD, Ueberheide BM, Liu Y, Tackett AJ, Diaz RL, Shabanowitz J, Chait BT, Hunt DF, Allis CD (2007) Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A 104:2086–2091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci U S A 103:6428–6435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhang TY, Labonte B, Wen XL, Turecki G, Meaney MJ (2013) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38:111–123

    Article  PubMed Central  PubMed  Google Scholar 

  34. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  35. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  36. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    Article  CAS  PubMed  Google Scholar 

  37. Fagiolini M, Jensen CL, Champagne FA (2009) Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol 19:207–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gonzales-Roybal G, Lim DA (2013) Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet 4:194

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Roth TL, Sweatt JD (2011) Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52:398–408

    Article  PubMed Central  PubMed  Google Scholar 

  41. Rangasamy S, D’Mello SR, Narayanan V (2013) Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics 10:742–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhubi A, Cook EH, Guidotti A, Grayson DR (2014) Epigenetic mechanisms in autism spectrum disorder. Int Rev Neurobiol 115:203–244

    Article  PubMed  Google Scholar 

  43. Zoghbi HY (2005) MeCP2 dysfunction in humans and mice. J Child Neurol 20:736–740

    Article  PubMed  Google Scholar 

  44. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  45. Moretti P, Zoghbi HY (2006) MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16:276–281

    Article  PubMed  Google Scholar 

  46. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF, Zoghbi HY, Schanen NC, Francke U (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yasui DH, Gonzales ML, Aflatooni JO, Crary FK, Hu DJ, Gavino BJ, Golub MS, Vincent JB, Carolyn Schanen N, Olson CO, Rastegar M, Lasalle JM (2014) Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum Mol Genet 23:2447–2458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Calfa G, Li W, Rutherford JM, Pozzo-Miller L (2015) Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice. Hippocampus 25:159

    Article  CAS  PubMed  Google Scholar 

  49. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102:12560–12565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  CAS  PubMed  Google Scholar 

  51. Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20:5085–5092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Singh J, Saxena A, Christodoulou J, Ravine D (2008) MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res 36:6035–6047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Willard HF, Hendrich BD (1999) Breaking the silence in Rett syndrome. Nat Genet 23:127–128

    Article  CAS  PubMed  Google Scholar 

  54. Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A 104:19416–19421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104:1931–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    Article  CAS  PubMed  Google Scholar 

  57. Luikenhuis S, Giacometti E, Beard CF, Jaenisch R (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A 101:6033–6038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Nelson ED, Kavalali ET, Monteggia LM (2006) MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 16:710–716

    Article  CAS  PubMed  Google Scholar 

  59. Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70–73

    Article  CAS  PubMed  Google Scholar 

  60. Lalande M, Calciano MA (2007) Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 64:947–960

    Article  CAS  PubMed  Google Scholar 

  61. Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  63. Rougeulle C, Cardoso C, Fontes M, Colleaux L, Lalande M (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19:15–16

    Article  CAS  PubMed  Google Scholar 

  64. Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N, Dutton JW Jr, Lee HM, Chen X, Jin J, Bridges AS, Zylka MJ, Roth BL, Philpot BD (2012) Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481:185–189

    Article  CAS  Google Scholar 

  65. Bittel DC, Butler MG (2005) Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7:1–20

    Article  PubMed  Google Scholar 

  66. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 18:1196–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet A 146A:2041–2052

    Article  CAS  PubMed  Google Scholar 

  68. Kantor B, Kaufman Y, Makedonski K, Razin A, Shemer R (2004) Establishing the epigenetic status of the Prader-Willi/Angelman imprinting center in the gametes and embryo. Hum Mol Genet 13:2767–2779

    Article  CAS  PubMed  Google Scholar 

  69. Perk J, Makedonski K, Lande L, Cedar H, Razin A, Shemer R (2002) The imprinting mechanism of the Prader-Willi/Angelman regional control center. EMBO J 21:5807–5814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Saitoh S, Wada T (2000) Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet 66:1958–1962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Baumgardner TL, Reiss AL, Freund LS, Abrams MT (1995) Specification of the neurobehavioral phenotype in males with fragile X syndrome. Pediatrics 95:744–752

    CAS  PubMed  Google Scholar 

  72. Terracciano A, Chiurazzi P, Neri G (2005) Fragile X syndrome. Am J Med Genet C Semin Med Genet 137C:32–37

    Article  PubMed  Google Scholar 

  73. Gallagher A, Hallahan B (2012) Fragile X-associated disorders: a clinical overview. J Neurol 259:401–413

    Article  CAS  PubMed  Google Scholar 

  74. Godler DE, Tassone F, Loesch DZ, Taylor AK, Gehling F, Hagerman RJ, Burgess T, Ganesamoorthy D, Hennerich D, Gordon L, Evans A, Choo KH, Slater HR (2010) Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum Mol Genet 19:1618–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822

    Article  CAS  PubMed  Google Scholar 

  76. He CX, Portera-Cailliau C (2013) The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 251:120–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Coffee B, Zhang F, Ceman S, Warren ST, Reines D (2002) Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Am J Hum Genet 71:923–932

    Article  PubMed Central  PubMed  Google Scholar 

  78. Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577

    Article  CAS  PubMed  Google Scholar 

  79. Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    Article  CAS  PubMed  Google Scholar 

  80. Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291–298

    Article  CAS  PubMed  Google Scholar 

  81. Grayson DR, Guidotti A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 38:138–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL (2008) Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics 9:1809–1823

    Article  CAS  PubMed  Google Scholar 

  83. Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30:55–60

    Article  CAS  PubMed  Google Scholar 

  84. Matrisciano F, Dong E, Gavin DP, Nicoletti F, Guidotti A (2011) Activation of group II metabotropic glutamate receptors promotes DNA demethylation in the mouse brain. Mol Pharmacol 80:174–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A (2012) Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology 37:929–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, Nicoletti F, Guidotti A (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 68:184–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. McGowan PO, Szyf M (2010) The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis 39:66–72

    Article  PubMed  Google Scholar 

  88. Dong E, Dzitoyeva SG, Matrisciano F, Tueting P, Grayson DR, Guidotti A (2015) Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice. Biol Psychiatry 77:589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Sun H, Kennedy PJ, Nestler EJ (2013) Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38:124–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Schroeder M, Krebs MO, Bleich S, Frieling H (2010) Epigenetics and depression: current challenges and new therapeutic options. Curr Opin Psychiatry 23:588–592

    Article  PubMed  Google Scholar 

  91. McGowan PO, Kato T (2008) Epigenetics in mood disorders. Environ Health Prev Med 13:16–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Murphy TM, Mullins N, Ryan M, Foster T, Kelly C, McClelland R, O’Grady J, Corcoran E, Brady J, Reilly M, Jeffers A, Brown K, Maher A, Bannan N, Casement A, Lynch D, Bolger S, Buckley A, Quinlivan L, Daly L, Kelleher C, Malone KM (2013) Genetic variation in DNMT3B and increased global DNA methylation is associated with suicide attempts in psychiatric patients. Genes Brain Behav 12:125–132

    Article  CAS  PubMed  Google Scholar 

  93. van Vliet J, Oates NA, Whitelaw E (2007) Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 64:1531–1538

    Article  PubMed  Google Scholar 

  94. Stauffer BL, DeSouza CA (2010) Epigenetics: an emerging player in health and disease. J Appl Physiol 109:230–231

    Article  PubMed  Google Scholar 

  95. Gavin DP, Sharma RP, Chase KA, Matrisciano F, Dong E, Guidotti A (2012) Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology 37:531–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kundakivic M, Chen Y, Guidotti A, Grayson DR (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:34254

    Google Scholar 

  98. Guidotti A, Auta J, Chen Y, Davis JM, Dong E, Gavin DP, Grayson DR, Matrisciano F, Pinna G, Satta R, Sharma RP, Tremolizzo L, Tueting P (2011) Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 60:1007–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. West AE, Greenberg ME. Neuronal activity-regulated gene trabscription in synapse development and cognitive function. Cold Spring Herb Perspect Biol. Review.

    Google Scholar 

  100. Kadriu B, Guidotti A, Costa E, Davis JM, Auta J. Acute imidazenil treatment after the onset of DFP-induced seizure is more effective and longer lasting than midazolam at preventing seizure activity and brain neuropathology. Toxicol Sci 2011, 120: 136–45.

    Article  CAS  PubMed  Google Scholar 

  101. Wu H, Zhang Y. Mechanisms and function of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011. 25: 2436–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Matrisciano M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matrisciano, F., Panaccione, I., Dong, E., Grayson, D.R., Guidotti, A. (2016). Epigenetics: From Basic Biology to Chromatin-Modifying Drugs and New Potential Clinical Applications. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics