Advertisement

Epitope-Specific Binder Design by Yeast Surface Display

  • Jasdeep K. Mann
  • Sheldon Park
Part of the Methods in Molecular Biology book series (MIMB, volume 1319)

Abstract

Yeast surface display is commonly used to engineer affinity and design novel molecular interaction. By alternating positive and negative selections, yeast display can be used to engineer binders that specifically interact with the target protein at a defined site. Epitope-specific binders can be useful as inhibitors if they bind the target molecule at functionally important sites. Therefore, an efficient method of engineering epitope specificity should help with the engineering of inhibitors. We describe the use of yeast surface display to design single domain monobodies that bind and inhibit the activity of the kinase Erk-2 by targeting a conserved surface patch involved in protein–protein interaction. The designed binders can be used to disrupt signaling in the cell and investigate Erk-2 function in vivo. The described protocol is general and can be used to design epitope-specific binders of an arbitrary protein.

Key words

Yeast surface display Epitope-specific interaction Monobody Negative design Assay development 

Notes

Acknowledgements

This work was supported by the NSF grant (1053608) to S.P.

References

  1. 1.
    Feldhaus MJ, Siegel RW (2004) Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods 290:69–80PubMedCrossRefGoogle Scholar
  2. 2.
    Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473. doi: 10.1016/j.sbi.2007.08.012, S0959-440X(07)00119-4 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Pepper LR, Cho YK, Boder ET et al (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. doi: 10.1038/nprot.2006.94, nprot.2006.94 [pii]PubMedCrossRefGoogle Scholar
  5. 5.
    Benatuil L, Perez JM, Belk J et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. doi: 10.1093/protein/gzq002, gzq002 [pii]PubMedCrossRefGoogle Scholar
  6. 6.
    Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444PubMedGoogle Scholar
  7. 7.
    Cochran JR, Kim YS, Olsen MJ et al (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158PubMedCrossRefGoogle Scholar
  8. 8.
    Levy R, Forsyth CM, LaPorte SL et al (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365:196–210. doi: 10.1016/j.jmb.2006.09.084, S0022-2836(06)01308-8 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mann JK, Wood JF, Stephan AF et al (2013) Epitope-guided engineering of monobody binders for in vivo inhibition of Erk-2 signaling. ACS Chem Biol 8:608–616. doi: 10.1021/cb300579e PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bardwell AJ, Flatauer LJ, Matsukuma K et al (2001) A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 276:10374–10386. doi: 10.1074/jbc.M010271200, M010271200 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dimitri CA, Dowdle W, MacKeigan JP et al (2005) Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr Biol 15:1319–1324. doi: 10.1016/j.cub.2005.06.037, S0960-9822(05)00672-X [pii]PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou T, Sun L, Humphreys J et al (2006) Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14:1011–1019. doi: 10.1016/j.str.2006.04.006, S0969-2126(06)00222-X [pii]PubMedCrossRefGoogle Scholar
  13. 13.
    Hackel BJ, Ackerman ME, Howland SW et al (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96. doi: 10.1016/j.jmb.2010.06.004, S0022-2836(10)00604-2 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252. doi: 10.1016/j.jmb.2008.06.051, S0022-2836(08)00767-5 [pii]PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloUSA
  2. 2.Bluebird BioSeattleUSA

Personalised recommendations