Skip to main content

Enzyme Evolution by Yeast Cell Surface Engineering

  • Protocol
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1319))

Abstract

Artificial evolution of proteins with the aim of acquiring novel or improved functionality is important for practical applications of the proteins. We have developed yeast cell surface engineering methods (or arming technology) for evolving enzymes. Here, we have described yeast cell surface engineering coupled with in vivo homologous recombination and library screening as a method for the artificial evolution of enzymes such as firefly luciferases. Using this method, novel luciferases with improved substrate specificity and substrate reactivity were engineered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  PubMed  Google Scholar 

  2. Miura N, Aoki W, Tokumoto N et al (2009) Cell surface modification for non-GMO without chemical treatment by novel GMO-coupled and -separated co-cultivation method. Appl Microbiol Biotechnol 82:293–301

    Article  CAS  PubMed  Google Scholar 

  3. Zou W, Ueda M, Yamanaka H et al (2001) Construction of a combinatorial protein library displayed on yeast cell surface using DNA random priming method. J Biosci Biotechnol 92:393–396

    CAS  Google Scholar 

  4. Shiraga S, Ueda M, Takahashi S et al (2002) Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface. J Mol Catal B Enzym 17:167–173

    Article  CAS  Google Scholar 

  5. Ueda M (2004) Combinatorial bioengineering-development of molecular evolution. J Mol Catal B Enzym 28:4–6

    Google Scholar 

  6. Ueda M (2004) Future direction of molecular display by yeast-cell surface engineering. J Mol Catal B Enzym 28:139–144

    Article  CAS  Google Scholar 

  7. Shiraga S, Kawakami M, Ueda M (2004) Construction of combinatorial library of the starch-binding domain of Rhizopus oryzae glucoamylase and screening of clones with enhanced activity by yeast display method. J Mol Catal B Enzym 28:229–234

    Article  CAS  Google Scholar 

  8. Lin Y, Shiraga S, Tsumuraya T et al (2004) Isolation of novel catalytic antibody clones from combinatorial library displayed on yeast-cell surface. J Mol Catal B Enzym 28:247–252

    Article  CAS  Google Scholar 

  9. Fukuda T, Shiraga S, Kato M et al (2005) Construction of novel single cell screening system using a yeast cell chip for nano-sized modified-protein-displaying libraries. Nanobiotechnology 1:105–111

    Article  CAS  Google Scholar 

  10. Shiraga S, Ishiguro M, Fukami H et al (2005) Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 68:779–785

    Article  CAS  PubMed  Google Scholar 

  11. Fukuda T, Shiraga S, Kato M et al (2006) Construction of a cultivation system of a yeast single cell in a cell chip microchamber. Biotechnol Prog 22:944–948

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda T, Kato M, Suye S et al (2007) Development of high-throughput screening system by single cell reaction using microchamber array chip. J Biosci Bioeng 104:241–243

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda T, Kato M, Kadonosono T et al (2007) Enhancement of substrate recognition ability by combinatorial mutation of β-glucosidase displayed on the yeast cell surface. Appl Microbiol Biotechnol 76:1027–1033

    Article  CAS  PubMed  Google Scholar 

  14. Okochi N, Kato M, Kadonosono T et al (2007) Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl Microbiol Biotechnol 77:597–603

    Article  CAS  PubMed  Google Scholar 

  15. Kadonosono T, Kato M, Ueda M (2008) Alteration of substrate specificity of rat neurolysin from matrix metalloproteinase-2/9-type to -3-type specificity by comprehensive mutation. Protein Eng Des Sel 21:507–513

    Article  CAS  PubMed  Google Scholar 

  16. Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113

    Article  CAS  PubMed  Google Scholar 

  17. Isogawa D, Fukuda T, Kuroda K et al (2009) Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library. Appl Microbiol Biotechnol 85:95–104

    Article  CAS  PubMed  Google Scholar 

  18. Aoki W, Yoshino Y, Morisaka H et al (2011) High-throughput screening of improved protease inhibitors using a yeast cell surface displaying system and a yeast cell chip. J Biotechnol Bioeng 111:16–18

    CAS  Google Scholar 

  19. Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159

    Article  CAS  PubMed  Google Scholar 

  20. Fushimi T, Miura N, Shintani H et al (2013) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by cell surface engineering. Appl Microbiol Biotechnol 97:4003–4011

    Article  CAS  PubMed  Google Scholar 

  21. Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812

    Article  CAS  PubMed  Google Scholar 

  22. Fukuda N, Ishii J, Shibasaki S et al (2007) High-efficiency recovery of target cells using improved yeast display system for detection of protein-protein interactions. Appl Microbiol Biotechnol 76:151–158

    Article  CAS  PubMed  Google Scholar 

  23. Maeda H, Nagayama M, Kuroda K et al (2009) Purification of inactive precursor of carboxypeptidase Y using selective cleavage method coupled with molecular display. Biosci Biotechnol Biochem 73:753–755

    Article  CAS  PubMed  Google Scholar 

  24. Shiraga S, Kawakami M, Ishiguro M et al (2005) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surface in organic solvents: potential as a whole cell biocatalyst in organic solvents. Appl Environ Microbiol 71:4335–4338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nakamura Y, Matsumoto T, Nomoto F et al (2006) Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (RS)-1-benzyloxy-3-chloro-2-propyl succinate. Biotechnol Prog 22:998–1002

    Article  CAS  PubMed  Google Scholar 

  26. Fukuda T, Ishikawa T, Ogawa M et al (2006) Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering. Biotechnol Prog 22:933–938

    Article  CAS  PubMed  Google Scholar 

  27. Kato M, Fuchimoto J, Tanio T et al (2007) Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl Microbiol Biotechnol 75:549–555

    Article  CAS  PubMed  Google Scholar 

  28. Kadonosono T, Kato M, Ueda M (2007) Substrate specificity of rat brain neurolysin disclosed by molecular display system and putative substrates in rat tissues. Appl Microbiol Biotechnol 75:353–1360

    Google Scholar 

  29. Kadonosono T, Kato M, Ueda M (2007) Metallopeptidase, neurolysin, as a novel molecular tool for analysis of properties of cancer-producing matrix metalloproteinases-2 and 9. Appl Microbiol Biotechnol 75:1285–1291

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda T, Kato M, Kuroda K et al (2008) Improvement in enzymatic desizing of starched cotton cloth using yeast co-displaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol 77:1225–1232

    Article  CAS  PubMed  Google Scholar 

  31. Nishitani T, Shimada M, Kuroda K et al (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  PubMed  Google Scholar 

  32. Nagayama M, Maeda H, Kuroda K et al (2012) Mutated intramolecular chaperones generate high-activity isomers of mature enzymes. Biochemistry 51:3547–3553

    Article  CAS  PubMed  Google Scholar 

  33. Nakanishi A, Bae J, Kuroda K et al (2012) Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering. AMB Express 2:56

    Article  PubMed Central  PubMed  Google Scholar 

  34. Matsui K, Hirayama T, Kuroda K et al (2006) Screening for candidate genes involved in tolerance to organic solvents in yeast. Appl Microbiol Biotechnol 71:75–79

    Article  CAS  PubMed  Google Scholar 

  35. Matsui K, Teranishi S, Kamon S et al (2008) Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant yeast. Appl Environ Microbiol 74:4222–4225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ueda M (2011) Revolutionary protein engineering using molecular display. In: Sheehan MN (ed) Protein engineering: design, selection, and applications. Nova Science Publisher, New York, pp 73–80

    Google Scholar 

  37. Isogawa D, Kuroda K, Ueda M (2011) Whole-cell biocatalyst for utilization of chitosan by yeast cell surface engineering of chitosanase. In: MacKay RG, Tait JM (eds) Handbook of chitosan research and application. Nova Science Publisher, New York, pp 425–434

    Google Scholar 

  38. Branchini BR, Magyar RA, Murtiashaw MH et al (1999) Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry 38:13223–13230

    Article  CAS  PubMed  Google Scholar 

  39. Branchini BR, Murtiashaw MH, Magyar RA et al (2000) The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry 39:5433–5440

    Article  CAS  PubMed  Google Scholar 

  40. Shimoi H, Kitagaki H, Ohmori H et al (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kuroda K, Matsui K, Higuchi S et al (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  PubMed  Google Scholar 

  42. Miura N, Kirino A, Endo S et al (2012) Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot Cell 11:1075–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ito H, Fukuda Y, Murata K et al (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miura, N., Kuroda, K., Ueda, M. (2015). Enzyme Evolution by Yeast Cell Surface Engineering. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics