Skip to main content

Design and Characterization of Topological Small RNAs

  • Protocol
RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1316))

Abstract

RNA can self-assemble into complex structures through base pairing, as well as encode information and bind with proteins to induce enzymatic activity. Furthermore, RNA can possess intrinsic enzymatic-like (ribozymatic) activity, a property that, if necessary, can be activated only upon the binding of a small molecule or another RNA (as is the case in aptazymes). As such, RNA could be of use in nanotechnology as a programmable polymer capable of self-assembling into complex topological structures. In this chapter we describe a method for designing advanced topological structures using self-circulating RNA, exemplified by three tiers of topologically manipulated self-assembling synthetic RNA systems. The first tier of topological manipulation, the RNA knot is a physically locked structure, formed by circularizing one monomer of knotted single-stranded RNA left with loose ends (an “open” knot). The second tier, a two interlocking ring system, is made by interlocking two circular RNA components: a circular RNA target, and an RNA lasso designed to intercalate the target before circularizing. The third tier naturally extends this system into a string of topologically locked circular RNA molecules (an RNA chain). We detail the methodology used for designing such topologically complex RNAs, including computational predictions of secondary structure, and where appropriate, RNA-RNA interactions, illustrated by examples. We then describe the experimental methods used for characterizing such structures, and provide sequences of building blocks that can be used for topological manipulation of RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci 109:15271–15276. doi:10.1073/pnas.1203831109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(17):318–322

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigo G, Landrain TE, Majer E, Daròs J-A, Jaramillo A (2013) Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comput Biol 9(8):e1003172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rostain W, Landrain TE, Rodrigo G, Jaramillo A (2014) Regulatory RNA design through evolutionary computation and strand-displacement. Methods Mol Biol (in this edition)

    Google Scholar 

  6. Hansch C, Maloney P, Fujita T, Muir R (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  7. Jeck W, Sharpless N (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rostain W, Shen S, Cordero T, Rodrigo G, Jaramillo A (2014) Engineering a circular riboregulator in Escherichia coli. bioRxiv. doi:10.1101/123456

  9. Burton AS (2010) Characterization of novel functions and topologies in RNA. Portland State University PhD Dissertation. Dissertations and theses. Paper 363

    Google Scholar 

  10. Nielsen H, Fiskaa T, Birgisdottir A, Haugen P, Einvik C, Johansen S (2003) The ability to form full-length intron RNA circles is a general property of nuclear group I introns. RNA 9(12):1464–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Puttaraju M, Been M (1992) Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res 20(20):5357–5364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stahley M, Strobel S (2006) RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr Opin Struct Biol 16(3):319–326

    Article  CAS  PubMed  Google Scholar 

  13. Salvo J, Coetzee T, Belfort M (1990) Deletion-tolerance and trans-splicing of the bacteriophage T4 td intron. J Mol Biol 211(3):537–549

    Article  CAS  Google Scholar 

  14. Bohjanen PR, Colvin RA, Puttaraju M, Been MD, Garcia-Blanco MA (1996) A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription. Nucleic Acids Res 24:3733–3738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nott A, Tsai L-H (2013) The Top3β way to untangle RNA. Nat Neurosci 16:1163–1164

    Article  CAS  PubMed  Google Scholar 

  16. Dallas A, Balatskaya S, Kuo T, Ilves H, Vlassov A, Kaspar R, Kisich K, Kazakov S, Johnston B (2008) Hairpin ribozyme-antisense RNA constructs can act as molecular lassos. Nucleic Acids Res 36(21):6752–6766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov S, Johnston B (2010) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16(1):106–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zadeh J, Steenberg C, Bois J, Wolfe B, Pierce M, Khan A, Dirks R, Pierce N (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  PubMed  Google Scholar 

  19. Lorenz R, Bernhart S, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler P, Hofacker I (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6(1):26

    Article  PubMed Central  PubMed  Google Scholar 

  20. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res 33(Web Server):W605–W610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rodrigo G, Jaramillo A (2014) RiboMaker: computational design of conformation-based riboregulation. Bioinformatics 1:2–4

    Google Scholar 

  22. Zhou Y, Lu C, Wu Q, Wang Y, Sun Z, Deng J, Zhang Y (2007) GISSD: group I intron sequence and structure database. Nucleic Acids Res 36(Database):D31–D37

    Article  PubMed Central  PubMed  Google Scholar 

  23. Taufer M et al (2009) PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. Nucleic Acids Res 37(Database):D127–D35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jaeger J, Restle T, Steitz TA (1998) The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J 17(15):4535–4542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Suzuki H, Zuo Y, Wang J, Zhang M, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:63

    Article  Google Scholar 

  26. Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29769–29775

    Article  CAS  PubMed  Google Scholar 

  27. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigo G, Prakash S, Shen S, Majer E, Daròs JA, Jaramillo A (2014) Cooperative riboregulation in living cells through allosteric programming of toehold activation. bioRxiv. doi:10.1101/009688

  29. Umekage S, Kikuchi Y (2009) In vitro and in vivo production and purification of circular RNA aptamer. J Biotechnol 139(4):265–272

    Article  CAS  PubMed  Google Scholar 

  30. Epicentre (An Illumina Company) (2012) Ribonuclease R, E. coli. EPILIT 266

    Google Scholar 

Download references

Acknowledgements

Work funded by the grants PROMYS (FP7-KBBE-613745) and EVOPROG (FP7-ICT-610730) to A.J. J.H. is funded by EPSRC and PM additionally acknowledges EPSRC for a PhD studentship through the MOAC Doctoral Training Centre grant number EP/F500378/1. W.R. is funded by a DGA-DSTL PhD fellowship. We thank Dr. So Umekage for all his help and the donation of the PIE T4 with Streptavidin aptamer plasmid. We also thank Ricardo Marco and Jiaye He for their help and support with the bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Jaramillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hassall, J., MacDonald, P., Cordero, T., Rostain, W., Jaramillo, A. (2015). Design and Characterization of Topological Small RNAs. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 1316. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2730-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2730-2_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2729-6

  • Online ISBN: 978-1-4939-2730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics