Skip to main content

A Method to Predict the 3D Structure of an RNA Scaffold

  • Protocol
RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1316))

Abstract

The ever increasing discoveries of noncoding RNA functions draw a strong demand for RNA structure determination from the sequence. In recently years, computational studies for RNA structures, at both the two-dimensional and the three-dimensional levels, led to several highly promising new developments. In this chapter, we describe a recently developed RNA structure prediction method based on the virtual bond-based coarse-grained folding model (Vfold). The main emphasis in the Vfold method is placed on the loop entropy calculations, the treatment of noncanonical (mismatch) interactions and the 3D structure assembly from motif-based template library. As case studies, we use the glycine riboswitch and the G310-U376 domain of MLV RNA to illustrate the Vfold-based prediction of RNA 3D structures from the sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  PubMed  Google Scholar 

  2. Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:774–790

    Article  Google Scholar 

  3. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3 UTRs via Alu elements. Nature 470:284–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  6. Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5:140

    Article  PubMed Central  PubMed  Google Scholar 

  7. Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2:a003665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Washietl S (2010) Sequence and structure analysis of noncoding RNAs. Methods Mol Biol 609:285–306

    Article  CAS  PubMed  Google Scholar 

  9. Machado-Lima A, del Portillo HA, Durham AM (2008) Computational methods in noncoding RNA research. J Math Biol 56:15–49

    Article  PubMed  Google Scholar 

  10. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278

    Article  CAS  PubMed  Google Scholar 

  11. Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cao S, Chen S-J (2005) Predicting RNA folding thermodynamics with a reduced chain representation model. RNA 11:1884–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen S-J (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu Rev Biophys 37:197–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Xu X, Zhao P, Chen S-J (2014) Vfold: a web server for RNA structure and folding thermodynamics prediction. PLoS ONE 9(9): e107504

    Google Scholar 

  15. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bellaousov S, Reuter JS, Seetin MG, Methews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41:W471–W474

    Article  PubMed Central  PubMed  Google Scholar 

  17. Xu X, Chen S-J (2012) Kinetic mechanism of conformational switch between bistable RNA hairpins. J Am Chem Soc 134:12499–12507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cao S, Chen S-J (2012) Predicting kissing interactions in microRNA-target complex and assessment of microRNA activity. Nucleic Acids Res 40:4681–4690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cao S, Chen S-J (2011) Structure and stability of RNA/RNA kissing complex: with application of HIV dimerization initiation signal. RNA 17:2130–2143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cao S, Xu X, Chen S-J (2014) Predicting structure and stability for RNA complexes with intermolecular loop- loop base pairing. RNA 20: 835–845

    Google Scholar 

  21. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 17:157–165

    Article  CAS  PubMed  Google Scholar 

  22. Rother K, Rother M, Boniecki M, Puton T, Bujnicki JM (2011) RNA and protein 3D structure modeling: similarities and differences. J Mol Model 17:2325–2336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Laing C, Schlick T (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 21:306–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sim AY, Minary P, Levitt M (2012) Modeling nucleic acids. Curr Opin Struct Biol 22:1–6

    Article  Google Scholar 

  25. Tan RK, Petrov AS, Harvey SC (2006) YUP: a molecular simulation program for coarse-grained and multi-scaled models. J Chem Theory Comput 2:529–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Xia Z, Bell DR, Shi Y, Ren P (2013) RNA 3D structure prediction by using a coarse-grained model and experimental data. J Phys Chem B 117:3135–3144

    Article  CAS  PubMed  Google Scholar 

  29. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cao S, Chen S-J (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    Article  CAS  PubMed  Google Scholar 

  32. Cao S, Chen S-J (2006) Predicting RNA psuedoknot folding thermodynamics. Nucleic Acids Res 34:2634–2652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cao S, Chen S-J (2009) Predicting structures and stabilities for H-type pseudoknots with inter-helix loop. RNA 15:696–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by NIH grant GM063732 and NSF grant MCB0920411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, X., Chen, SJ. (2015). A Method to Predict the 3D Structure of an RNA Scaffold. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 1316. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2730-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2730-2_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2729-6

  • Online ISBN: 978-1-4939-2730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics