Skip to main content

iCaspase 9 Suicide Gene System

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1317))

Abstract

Although cellular therapies may be effective in cancer treatment, their potential for expansion, damage of normal organs, and malignant transformation is a source of concern. The ability to conditionally eliminate aberrant cells in vivo would ameliorate these concerns and broaden the application of cellular therapy. We devised an inducible T-cell safety switch that can be stably and efficiently expressed in human T cells without impairing phenotype, function, or antigen specificity. This system is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization using a small-molecule drug. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iC9) becomes activated and leads to the rapid apoptosis of cells expressing this construct. We have demonstrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant (haplo-HSCT). A single dose of a small-molecule drug (AP1903) eliminated more than 90 % of the modified T cells within 30 min after administration and symptoms resolved without recurrence. This system has the potential to broaden the clinical applications of cellular therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  CAS  PubMed  Google Scholar 

  2. Rooney CM, Smith CA, Ng CY et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    CAS  PubMed  Google Scholar 

  3. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bonini C, Ferrari G, Verzeletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276:1719–1724

    Article  CAS  PubMed  Google Scholar 

  5. Ciceri F, Bonini C, Marktel S et al (2007) Antitumor effects of HSV-TK–engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 109:4698–4707

    Article  CAS  PubMed  Google Scholar 

  6. Tiberghien P, Ferrand C, Lioure B et al (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97:63–72

    Article  CAS  PubMed  Google Scholar 

  7. Ciceri F, Bonini C, Stanghellini MT et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10:489–500

    Article  PubMed  Google Scholar 

  8. Traversari C, Marktel S, Magnani Z et al (2007) The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109:4708–4715

    Article  CAS  PubMed  Google Scholar 

  9. Garin MI, Garrett E, Tiberghien P et al (2001) Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 97:122–129

    Article  CAS  PubMed  Google Scholar 

  10. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR (1993) Controlling signal transduction with synthetic ligands. Science 262:1019–1024

    Article  CAS  PubMed  Google Scholar 

  11. Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287

    Article  CAS  PubMed  Google Scholar 

  12. Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697

    Article  CAS  PubMed  Google Scholar 

  13. Clackson T, Yang W, Rozamus LW et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A 95:10437–10442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Iuliucci JD, Oliver SD, Morley S et al (2001) Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 41:870–879

    Article  CAS  PubMed  Google Scholar 

  15. Straathof KC, Pulè MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 13(8):913–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed Central  PubMed  Google Scholar 

  18. Montagna D, Yvon E, Calcaterra V et al (1999) Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 93(10):3550–3557

    CAS  PubMed  Google Scholar 

  19. André-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al (2002) Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 360(9327):130–137

    Article  PubMed  Google Scholar 

  20. Amrolia PJ, Muccioli-Casadei G, Yvon E et al (2003) Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 102(6):2292–2299

    Article  CAS  PubMed  Google Scholar 

  21. Amrolia PJ, Muccioli-Casadei G, Huls H et al (2006) Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 108(6):1797–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Schnell R, Vitetta E, Schindler J et al (1998) Clinical trials with an anti-CD25 ricin A-chain experimental and immunotoxin (RFT5-SMPT-dgA) in Hodgkin’s lymphoma. Leuk Lymphoma 30(5–6):525–537

    CAS  PubMed  Google Scholar 

  23. Zhou X, Di Stasi A, Tey SK et al (2014) Long-term outcome and immune reconstitution after haploidentical stem cell transplant in recipients of allodepleted-T-cells expressing the inducible caspase-9 safety transgene. Blood 123(25):3895–3905

    Article  CAS  PubMed  Google Scholar 

  24. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Heart, Lung, and Blood Institute NIH-NHLBI grant U54HL08100, and development of the caspase system by P01CA094237 and P50CA126752, Center for Cell and Gene Therapy at Baylor College of Medicine. Clinical trial is registered at www.clinicaltrials.gov as NCT00710892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm K. Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, X., Di Stasi, A., Brenner, M.K. (2015). iCaspase 9 Suicide Gene System. In: Walther, W., Stein, U. (eds) Gene Therapy of Solid Cancers. Methods in Molecular Biology, vol 1317. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2727-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2727-2_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2726-5

  • Online ISBN: 978-1-4939-2727-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics