Skip to main content

Analysis of Mutational Hotspots in Routinely Processed Bone Marrow Trephines by Pyrosequencing®

  • Protocol
Pyrosequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1315))

Abstract

Formalin-fixed, paraffin-embedded (FFPE) bone marrow trephines are widely used in pathology, because they best preserve the morphological details of the bone marrow. However, DNA isolated from FFPE material is fragmented, limiting the size of amplification products, which is a challenge for all sequencing applications.

Pyrosequencing® is a quantitative and sensitive method for the detection of single-nucleotide variations (SNVs) in DNA samples. Pyrosequencing can easily be performed in a 96-well-plate format with a cost-effective medium-sized throughput.

This chapter provides a general outline of SNV detection in FFPE bone marrow trephines, including a detailed protocol of the Pyrosequencing procedure and guidelines for the design of new assays and evaluation of Pyrograms. The strengths of this approach are discussed using myeloproliferative neoplasms as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tefferi A, Vardiman J (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22:14–22

    Article  CAS  PubMed  Google Scholar 

  2. Cleary C, Kralovics R (2013) Molecular basis and clonal evolution of myeloproliferative neoplasms. Clin Chem Lab Med 51:1889–1896

    Article  CAS  PubMed  Google Scholar 

  3. Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhang S-J, Rampal R, Manshouri T et al (2012) Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 119:4480–4485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tefferi A (2013) Primary myelofibrosis: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol 88:141–150

    Article  CAS  PubMed  Google Scholar 

  6. Buhr T, Hebeda K, Kaloutsi V et al (2012) European Bone Marrow Working Group trial on reproducibility of World Health Organization criteria to discriminate essential thrombocythemia from prefibrotic primary myelofibrosis. Haematologica 97:360–365

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hasemeier B, Geffers R, Bartels S et al (2013) Archival bone marrow trephines are suitable for high-throughput mutation analysis using next generation sequencing technology. Haematologica 98:e115–e116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dietrich D, Uhl B, Sailer V et al (2013) Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition. PLoS One 8:e77771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Harrington CT, Lin EI, Olson MT et al (2013) Fundamentals of pyrosequencing. Arch Pathol Lab Med 137:1296–1303

    Article  CAS  PubMed  Google Scholar 

  10. James C, Ugo V, Le Couédic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  CAS  PubMed  Google Scholar 

  11. Soriano G, Heaney M (2013) Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol 20:169–175

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Article  CAS  PubMed  Google Scholar 

  13. Murati A, Brecqueville M, Devillier R et al (2012) Myeloid malignancies: mutations, models and management. BMC Cancer 12:304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lasho TL, Jimma T, Finke CM et al (2012) SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood 120:4168–4171

    Article  CAS  PubMed  Google Scholar 

  15. Brecqueville M, Rey J, Bertucci F et al (2012) Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 51:743–755

    Article  CAS  PubMed  Google Scholar 

  16. Shih AH, Chung SS, Dolezal EK et al (2013) Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Haematologica 98:908–912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lehmann U, Bartels S, Hasemeier B et al (2013) SRSF2 mutation is present in the hypercellular and prefibrotic stage of primary myelofibrosis. Blood 121:4011–4012

    Article  CAS  PubMed  Google Scholar 

  18. Reineke T, Jenni B, Abdou MT et al (2006) Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol 30:892–896

    Article  PubMed  Google Scholar 

  19. Issa JP, Gharibyan V, Cortes J et al (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23:3948–3956

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bartels, S., Lehmann, U. (2015). Analysis of Mutational Hotspots in Routinely Processed Bone Marrow Trephines by Pyrosequencing® . In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics