Skip to main content

DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing®

  • Protocol
Pyrosequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1315))

Abstract

Interaction and co-occurrence of protein and DNA-based epigenetic modifications have become a topic of interest for many fundamental and biomedical questions. We describe within this chapter a protocol that combines two techniques in order to determine the methylation status of the DNA specifically associated with a protein of interest. First, DNA that directly interacts with the selected protein (such as a specific histone modification, a transcription factor, or any other DNA-associated protein) is purified by standard chromatin immunoprecipitation (ChIP). Second, the level of DNA methylation of this immunoprecipitated DNA is measured by bisulfite conversion and Pyrosequencing, a quantitative sequencing-by-synthesis method. This procedure allows determining the methylation status of genomic DNA associated to a specific protein at single nucleotide resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shanmuganathan R, Basheer NB, Amirthalingam L et al (2013) Conventional and nanotechniques for DNA methylation profiling. J Mol Diagn 15:17–26

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki M, Greally JM (2013) Genome-wide DNA methylation analysis using massively parallel sequencing technologies. Semin Hematol 50:70–77

    Article  CAS  PubMed  Google Scholar 

  3. Mensaert K, Denil S, Trooskens G et al (2014) Next-generation technologies and data analytical approaches for epigenomics. Environ Mol Mutagen 55:155–170

    Article  CAS  PubMed  Google Scholar 

  4. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  6. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265–2275

    Article  CAS  PubMed  Google Scholar 

  7. Dupont JM, Tost J, Jammes H et al (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    Article  CAS  PubMed  Google Scholar 

  8. Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363:83–94

    Article  CAS  PubMed  Google Scholar 

  9. Moison C, Assemat F, Daunay A et al (2014) Synergistic chromatin repression of the tumor suppressor gene RARB in human prostate cancers. Epigenetics 9:477–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc. 2009:pdb prot5279

    Google Scholar 

  11. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19:425–433

    Article  CAS  PubMed  Google Scholar 

  12. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  CAS  PubMed  Google Scholar 

  13. Johnson KD, Bresnick EH (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26:27–36

    Article  CAS  PubMed  Google Scholar 

  14. Ren B, Dynlacht BD (2004) Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol 376:304–315

    CAS  PubMed  Google Scholar 

  15. Bernstein BE, Humphrey EL, Liu CL et al (2004) The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol 376:349–360

    CAS  PubMed  Google Scholar 

  16. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  17. Brinkman AB, Pennings SW, Braliou GG et al (2007) DNA methylation immediately adjacent to active histone marking does not silence transcription. Nucleic Acids Res 35:801–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Statham AL, Robinson MD, Song JZ et al (2012) Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res 22:1120–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Campan M, Weisenberger DJ, Trinh B et al (2009) MethyLight. Methods Mol Biol 507:325–337

    CAS  PubMed  Google Scholar 

  20. Kramer A, Mailand N, Lukas C et al (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6:884–891

    Article  PubMed  Google Scholar 

  21. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  22. Aranyi T, Varadi A, Simon I et al (2006) The BiSearch web server. BMC Bioinformatics 7:431

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moison C, Senamaud-Beaufort C, Fourriere L et al (2013) DNA methylation associated with polycomb repression in retinoic acid receptor beta silencing. FASEB J 27:1468–1478

    Article  CAS  PubMed  Google Scholar 

  24. Kurdistani SK, Grunstein M (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31:90–95

    Article  CAS  PubMed  Google Scholar 

  25. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725

    Article  CAS  PubMed  Google Scholar 

  26. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82

    Article  PubMed  Google Scholar 

  27. Tost J, El abdalaoui H, Gut IG (2006) Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques 40:721–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ATIP CNRS and Equipe d’Excellence Région Midi-Pyrenées grant to PBA. CM was recipient of an MNERT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moison, C., Assemat, F., Daunay, A., Arimondo, P.B., Tost, J. (2015). DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing® . In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics