Skip to main content

SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®

  • Protocol
Pyrosequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1315))

Abstract

The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing®. Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tost J (2010) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol 44:71–81

    Article  CAS  PubMed  Google Scholar 

  2. Kerkel K, Spadola A, Yuan E et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40:904–908

    Article  CAS  PubMed  Google Scholar 

  3. Schalkwyk LC, Meaburn EL, Smith R et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86:196–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hutchinson JN, Raj T, Fagerness J et al (2014) Allele-specific methylation occurs at genetic variants associated with complex disease. PLoS One 9:e98464

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365

    Google Scholar 

  6. Harrington CT, Lin EI, Olson MT et al (2013) Fundamentals of pyrosequencing. Arch Pathol Lab Med 137:1296–1303

    Article  CAS  PubMed  Google Scholar 

  7. Langaee T, Ronaghi M (2005) Genetic variation analyses by pyrosequencing. Mutat Res 573:96–102

    Article  CAS  PubMed  Google Scholar 

  8. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  9. Dupont JM, Tost J, Jammes H et al (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    Article  CAS  PubMed  Google Scholar 

  10. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265–2275

    Article  CAS  PubMed  Google Scholar 

  11. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363:83–94

    Article  CAS  PubMed  Google Scholar 

  13. Ogino S, Kawasaki T, Brahmandam M et al (2005) Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 7:413–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lundin KE, Hojland T, Hansen BR et al (2013) Biological activity and biotechnological aspects of locked nucleic acids. Adv Genet 82:47–107

    CAS  PubMed  Google Scholar 

  15. How Kit A, Mazaleyrat N, Daunay A et al (2013) Sensitive detection of KRAS mutations using enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification. Hum Mutat 34:1568–1580

    Article  PubMed  Google Scholar 

  16. Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15:517–530

    Article  CAS  PubMed  Google Scholar 

  17. Wong HL, Byun HM, Kwan JM et al (2006) Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques 41:734–739

    Article  CAS  PubMed  Google Scholar 

  18. Shaw RJ, Akufo-Tetteh EK, Risk JM et al (2006) Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res 34:e78

    Article  PubMed Central  PubMed  Google Scholar 

  19. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  20. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3: new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  22. Zhou GH, Gotou M, Kajiyama T et al (2005) Multiplex SNP typing by bioluminometric assay coupled with terminator incorporation (BATI). Nucleic Acids Res 33:e133

    Article  PubMed Central  PubMed  Google Scholar 

  23. Aranyi T, Varadi A, Simon I et al (2006) The BiSearch web server. BMC Bioinformatics 7:431

    Article  PubMed Central  PubMed  Google Scholar 

  24. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Campan M, Weisenberger DJ, Trinh B et al (2009) MethyLight. Methods Mol Biol 507:325–337

    CAS  PubMed  Google Scholar 

  26. Okimoto R, Dodgson JB (1996) Improved PCR amplification of multiple specific alleles (PAMSA) using internally mismatched primers. Biotechniques 21:20–22

    CAS  PubMed  Google Scholar 

  27. Tost J, El abdalaoui H, Gut IG (2006) Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques 40:721–726

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Busato, F., Tost, J. (2015). SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing® . In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics