Skip to main content

Limiting Dilution Bisulfite Pyrosequencing®: A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1315))

Abstract

Bisulfite-based methods for DNA methylation analysis of small amounts of DNA from a limited number of cells are technologically challenging. Degradation of genomic DNA by bisulfite treatment, contamination with foreign DNA, and biases in the amplification of individual DNA molecules can generate results, which are not representative of the starting sample. Limiting dilution (LD) bisulfite Pyrosequencing® (BSP) is a relatively simple technique to circumvent these problems. The bisulfite-treated DNA of a single or a few cells is diluted to an extent, that only a single DNA target molecule is present in the reaction. Then each individual DNA molecule in the starting sample is separately amplified and analyzed by Pyrosequencing. This allows the detection of rare alleles that are easily masked when pools of DNA target molecules are analyzed. Amplicons containing a heterozygous single nucleotide polymorphism (SNP) allow one to delineate the parental origin of the recovered molecules in addition to their methylation status. The number of cells (DNA target molecules) in the starting sample determines the dilution level and the number of reactions that have to be performed. LD-BSP allows methylation analysis of small cell pools (i.e., 5–10 microdissected cells) and even individual cells. The primers and PCR conditions described here have been successfully employed to analyze the methylation status of up to eight target genes in individual 2–16 cell embryos, germinal vesicle (GV) oocytes, and haploid sperms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  2. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  3. Colella S, Shen L, Baggerly KA et al (2003) Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    CAS  PubMed  Google Scholar 

  4. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  5. Uhlmann K, Brinckmann A, Toliat M et al (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    Article  CAS  PubMed  Google Scholar 

  6. Warnecke PM, Stirzaker C, Melki JR et al (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25:4422–4426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad U S A 89:1827–1831

    Article  CAS  Google Scholar 

  8. Arányi T, Váradi A, Simon I et al (2006) The BiSearch web server. BMC Bioinformatics 7:431

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tusnády GE, Simon I, Váradi A et al (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33:e9

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lucifero D, Mertineit C, Clarke HJ et al (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538

    Article  CAS  PubMed  Google Scholar 

  11. Hiura H, Obata Y, Komiyama J et al (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353–361

    Article  CAS  PubMed  Google Scholar 

  12. Anckaert E, Romero S, Adriaenssens T et al (2010) Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment. Biol Reprod 83:377–386

    Article  CAS  PubMed  Google Scholar 

  13. Tomizawa S, Kobayashi H, Watanabe T et al (2011) Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138:811–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fauque P, Jouannet P, Lesaffre C et al (2007) Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 7:116

    Article  PubMed Central  PubMed  Google Scholar 

  15. Market-Velker BA, Zhang L, Magri LS et al (2010) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19:36–51

    Article  CAS  PubMed  Google Scholar 

  16. Hajkova P, El-Maarri O, Engemann S et al (2002) DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol 200:143–154

    CAS  PubMed  Google Scholar 

  17. Geuns E, de Rycke M, van Steirteghem A et al (2003) Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum Mol Genet 12:2873–2879

    Article  CAS  PubMed  Google Scholar 

  18. Mill J, Petronis A (2009) Profiling DNA methylation from small amounts of genomic DNA starting material: efficient sodium bisulfite conversion and subsequent whole-genome amplification. Methods Mol Biol 507:371–381

    CAS  PubMed  Google Scholar 

  19. Kantlehner M, Kirchner R, Hartmann P et al (2011) A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 3:e44

    Article  Google Scholar 

  20. Lorthongpanich C, Cheow LF, Balu S et al (2013) Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341:1110–1112

    Article  CAS  PubMed  Google Scholar 

  21. El Hajj N, Trapphoff T, Linke M et al (2011) Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics 6:1176–1188

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sontag LB, Lorincz MC, Luebeck GE (2006) Dynamics, stability and inheritance of somatic DNA methylation imprints. J Theor Biol 242:890–899

    Article  CAS  PubMed  Google Scholar 

  23. Weber M, Hellmann I, Stadler MB et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  24. Daser A, Thangavelu M, Pannell R et al (2006) Interrogation of genomes by molecular copy-number counting (MCC). Nat Methods 3:447–453

    Article  CAS  PubMed  Google Scholar 

  25. Trapphoff T, El Hajj N, Zechner U et al (2010) DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod 25:3025–3042

    Article  CAS  PubMed  Google Scholar 

  26. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  27. Diederich M, Hansmann T, Heinzmann J et al (2012) DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors. Reproduction 144:319–330

    Article  CAS  PubMed  Google Scholar 

  28. Heinzmann J, Hansmann T, Herrmann D et al (2011) Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev 78:188–201

    Article  CAS  PubMed  Google Scholar 

  29. Reik W, Constância M, Fowden A et al (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547:35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kelsey G (2007) Genomic imprinting – roles and regulation in development. Endocr Dev 12:99–112

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hajj, N.E., Kuhtz, J., Haaf, T. (2015). Limiting Dilution Bisulfite Pyrosequencing®: A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells. In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics