Skip to main content

The History of Pyrosequencing®

  • Protocol
Pyrosequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1315))

Abstract

One late afternoon in the beginning of January 1986, bicycling from the lab over the hill to the small village of Fulbourn, the idea for an alternative DNA sequencing technique came to my mind. The basic concept was to follow the activity of DNA polymerase during nucleotide incorporation into a DNA strand by analyzing the pyrophosphate released during the process. Today, the technique is used in multidisciplinary fields in academic, clinical, and industrial settings all over the word. This technique can be used for both single-base sequencing and whole-genome sequencing, depending on the format used.

In this chapter, I give my personal account of the development of Pyrosequencing®—beginning on a winter day in 1986, when I first envisioned the method—until today, nearly 30 years later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nyrén P (2001) Method for sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation. Patents: US 6 258 568BI and WO98/28440

    Google Scholar 

  2. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate detection. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  3. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Runswick MJ, Powell SJ, Nyrén P et al (1987) Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J 6:1367–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Nyrén P, Lundin A (1985) Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem 151:504–509

    Article  PubMed  Google Scholar 

  6. Nyrén P, Nore BF, Baltscheffsky M (1986) Studies on photosynthetic inorganic pyrophosphate formation in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 851:276–282

    Article  PubMed  Google Scholar 

  7. Nyrén P, Nore BF, Baltscheffsky M (1986) Inorganic pyrophosphate synthesis after a short light flash in chromatophores from Rhodospirillum rubrum. Photobiochem Photobiophys 11:189–196

    Google Scholar 

  8. Nyrén P (1987) Enzymatic method for continuous monitoring of DNA-polymerase activity. Anal Biochem 167:235–238

    Article  PubMed  Google Scholar 

  9. Melamede RJ (1985) Automatable process for sequencing nucleotide. US Patent 4863849

    Google Scholar 

  10. Ståhl S, Hultman T, Moks T et al (1988) Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Res 16:3025–3038

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nyrén P (1994) Apyrase immobilized on paramagnetic beads used to improve detection limits in bioluminometric ATP monitoring. J Biolumin Chemilumin 9:29–34

    Article  PubMed  Google Scholar 

  12. Nyrén P, Pettersson B, Uhlén M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem 208:171–175

    Article  PubMed  Google Scholar 

  13. Nyrén P, Karamouhamed S, Ronaghi M (1997) Detection of single-base changes using a bioluminometric primer extension assay. Anal Biochem 244:367–373

    Article  PubMed  Google Scholar 

  14. Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  15. Nyrén P (1994) A method for the detection of cells, cell lysis or cell-lysing activity. Swedish patent application

    Google Scholar 

  16. Nyrén P, Edwin V (1994) Inorganic pyrophosphate-based detections: detection and enumeration of cells. Anal Biochem 220:39–45

    Article  PubMed  Google Scholar 

  17. Nyrén P, Edwin V (1994) Inorganic pyrophosphate-based detections: detection and quantification of cell lysis and cell-lysing activity. Anal Biochem 220:46–52

    Article  PubMed  Google Scholar 

  18. Karamohamed S, Nordström T, Nyrén P (1999) A real-time bioluminometric method for detection of nucleoside diphosphate kinase activity. Biotechniques 26:728–734

    CAS  PubMed  Google Scholar 

  19. Karamouhamed S, Nilsson J, Nourizad K et al (1999) Production, purification, and real-time functional analysis of recombinant Saccharomyces cervisiae MET3 adenosine triphosphate sulfurylase expressed in Escherichia coli. Protein Expr Purif 15:381–388

    Article  Google Scholar 

  20. Ronaghi M (2000) Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem 286:282–288

    Article  CAS  PubMed  Google Scholar 

  21. Nordström T, Gharizadeh B, Pourmand N et al (2001) Method enabling fast partial sequencing of cDNA clones. Anal Biochem 292:266–271

    Article  PubMed  Google Scholar 

  22. Nordström T, Ronaghi M, Nyrén P (1999) Automation of a novel DNA sequencing method. In: Rod A, Pazzagli M, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: perspective for the 21st Century. John Wiley, Hoboken, NJ, pp 528–531

    Google Scholar 

  23. Gharizadeh B, Nordström T, Ahmadian A et al (2002) Long read pyrosequencing using pure 2′-deoxyadenosine-5′-O′-(1-thiotriphosphate) Sp-isomer. Anal Biochem 301:82–90

    Article  CAS  PubMed  Google Scholar 

  24. Eriksson J, Gharizadeh B, Nourizad N et al (2004) 7-deaza-2′-deoxyadenosine-5′-triphosphate as an alternative nucleotide for the pyrosequencing technology. Nucleosides Nucleotides Nucleic Acids 23:1583–1594

    Article  CAS  PubMed  Google Scholar 

  25. Gharizadeh B, Eriksson J, Nourizad N et al (2004) Improvements in pyrosequencing technology by employing sequenase polymerase. Anal Biochem 330:272–280

    Article  CAS  PubMed  Google Scholar 

  26. Eriksson J, Nordström T, Nyrén P (2003) Method enabling firefly luciferase based bioluminometric assays at elevated temperature. Anal Biochem 314:158–161

    Article  CAS  PubMed  Google Scholar 

  27. Eriksson J, Gharizadeh B, Nordström T et al (2004) Pyrosequencing technology at elevated temperature. Electrophoresis 25:20–27

    Article  CAS  PubMed  Google Scholar 

  28. Nordström T, Ronaghi M, Morgenstern R et al (2000) Direct analysis of single nucleotide polymorphism on double-stranded DNA. Biotechnol Appl Biochem 31:107–112

    Article  PubMed  Google Scholar 

  29. Nordström T, Nourizad K, Ronaghi M et al (2000) Method enabling pyrosequencing on double-stranded DNA. Anal Biochem 282:186–193

    Article  PubMed  Google Scholar 

  30. Nordström T, Alderborn A, Nyrén P (2002) Method for one-step preparation of double-stranded DNA template applicable for use with pyrosequencing technology. J Biochem Biophys Methods 52:71–82

    Article  PubMed  Google Scholar 

  31. Garcia CA, Ahmadian A, Garizadeh B et al (2000) Mutation detection by pyrosequencing: sequencing of exons 5 to 8 of the p53 tumor suppressor gene. Gene 253:249–257

    Article  CAS  PubMed  Google Scholar 

  32. Nourizad N, Gharizadeh B, Nyrén P (2003) Method for clone checking. Electrophoresis 24:1712–1715

    Article  CAS  PubMed  Google Scholar 

  33. Gharizadeh B, Ghaderi M, Donnelly D et al (2003) Multiple-primer DNA sequencing method. Electrophoresis 24:1145–1151

    Article  CAS  PubMed  Google Scholar 

  34. Gharizadeh B, Ohlin A, Mölling P et al (2003) Multiple group-specific sequencing primers for reliable and rapid DNA sequencing. Mol Cell Probes 17:203–210

    Article  CAS  PubMed  Google Scholar 

  35. Gharizadeh B, Oggionni M, Zheng B et al (2005) Type-specific multiple sequencing primers: a novel strategy for reliable and rapid genotyping of human papillomaviruses by pyrosequencing technology. J Mol Diagn 7:198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Leamon JH, Lee WL, Tartaro KR et al (2003) A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reaction. Electrophoresis 24:3769–3777

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadian A, Gharizadeh B, Gustafsson A et al (2000) Single nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  CAS  PubMed  Google Scholar 

  38. Gruber JD, Colligan PB, Wolford JK (2002) Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Hum Genet 110:395–401

    Article  CAS  PubMed  Google Scholar 

  39. Uhlmann K, Brinckmann A, Toliat MR et al (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    Article  CAS  PubMed  Google Scholar 

  40. Ahmadian A, Lundeberg J, Nyrén P et al (2000) Analysis of the p53 tumor supressor gene by pyrosequencing. Biotechniques 28:140–147

    CAS  PubMed  Google Scholar 

  41. Goriely A, McVean GA, Rojmyr M et al (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301:643–646

    Article  CAS  PubMed  Google Scholar 

  42. Andreasson H, Asp A, Alderborn A et al (2002) Mitochondrial sequence analysis for forensic identification using pyrosequencing technology. Biotechniques 32:124–133

    CAS  PubMed  Google Scholar 

  43. Allen M, Andreasson H (2005) Mitochondrial D-loop and coding sequence analysis using pyrosequencing. Methods Mol Biol 297:179–196

    CAS  PubMed  Google Scholar 

  44. Cebula TA, Brown EW, Jackson SA et al (2005) Molecular applications for identifying microbial pathogens in the post-9/11 era. Expert Rev Mol Diagn 5:431–445

    Article  CAS  PubMed  Google Scholar 

  45. Gharizadeh B, Norberg E, Löffler J et al (2004) Identification of medically important fungi by pyrosequencing technology. Mycoses 47:29–33

    Article  CAS  PubMed  Google Scholar 

  46. Gharizadeh B, Kalantari M, Garcia C et al (2001) Typing of human papillomavirus (HPV) by pyrosequencing. Lab Invest 81:673–679

    Article  CAS  PubMed  Google Scholar 

  47. Milan D, Jeon JT, Looft C et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 19:1248–1251

    Article  Google Scholar 

  48. Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377

    Article  CAS  PubMed  Google Scholar 

  49. Danzer M, Niklas N, Stabentheiner S et al (2013) Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics 14:221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319:1096–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hahn KR, Janzen TW, Thomas MC et al (2014) Single nucleotide repeat analysis of B. anthracis isolates in Canada through comparison of pyrosequencing and Sanger sequencing. Vet Microbiol 169:228–232

    Article  CAS  PubMed  Google Scholar 

  52. McCann CD, Jordan JA (2014) Evaluation of MolYsis™ Complete DNA extraction method for detecting Staphylococcus aureus DNA from whole blood in a sepsis model. J Microbiol Methods 99:1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Song Q, Wei G, Zhou G (2014) Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chem 154:78–83

    Article  CAS  PubMed  Google Scholar 

  54. Svantesson S, Westermark PO, Hellgren-Kotaleski J et al (2004) A mathematical model of the pyrosequencing reaction system. Biophys Chem 110:129–145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Nyrén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nyrén, P. (2015). The History of Pyrosequencing® . In: Lehmann, U., Tost, J. (eds) Pyrosequencing. Methods in Molecular Biology, vol 1315. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2715-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2715-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2714-2

  • Online ISBN: 978-1-4939-2715-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics